cho hình thang cân abcd(,ab//cd, ab nhỏ hơn cd)kẻ các đg cao ah,bk của hình thag .chứng minh a)ah=bk. b)tứ giác abkh là hình thag cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TỨ GIÁC ABHK LÀ HCN DẤU HIỆU 1
B)
TAM GIÁC AHD= TAM GIÁC BCK (CH-CGV)VÌ
GÓC H = GÓC K ( CÙNG BẰNG 90 ĐỘ)
AH=AK(ABHK LÀ HCN)
AD=BC(ABCD LÀ HÌNH THANG CÂN)
SUY RA DH=KC ( HAI CẠNH TƯƠNG ỨNG)
a: Xét tứ giác ABCH có
AB//CH
góc AHC=90 độ
Do đó: ABCH là hình thang vuông
b: Sửa đề; DH=CK
Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
AD=BC
góc D=góc C
Do đo: ΔAHD=ΔBKC
=>DH=CK
c: Xét ΔAED có
AH vừa là đường cao, vừa là trung tuyến
nên ΔAED cân tại A
=>góc AED=góc ADE=góc BCD
=>AE//BC
mà AB//CE
nên ABCE là hình bình hành
a: Xét tứ giác ABKH có
AB//HK
AB=HK
Do đó: ABKH là hình bình hành
mà \(\widehat{AHK}=90^0\)
nên ABKH là hình chữ nhật
a: Xét tứ giác ABKH có
AB//HK
AH//BK
Do đó: ABKH là hình bình hành
mà \(\widehat{AHK}=90^0\)
nên ABKH là hình chữ nhật
Xét hình thang cân ABCD ( AB // CD )
\(\Rightarrow\hept{\begin{cases}\widehat{D}=\widehat{C}\\AD=BC\end{cases}\left(t/c\right)}\)
Xét \(\Delta ADH=\Delta BCK\)
\(\hept{\begin{cases}\widehat{AHD}=\widehat{BKC}\left(=90^o\right)\\AD=BC\left(cmt\right)\\\widehat{D}=\widehat{C}\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta ADH=\Delta BCK\) ( ch - gn )
\(\Rightarrow AH=BK\) ( 2 cạnh tương ứng )
b) Vì \(\Delta ADH=\Delta BCK\left(cmt\right)\)
\(\Rightarrow DK=CK\) ( 2 cạnh tương ứng )
Chúc bạn học tốt !!!
Áp dụng định nghĩa, tính chất và giả thiết của hình thang cân ta có:
⇒ Δ ADH = Δ BCK
(trường hợp cạnh huyền – góc nhọn)
⇒ DH = CK (cặp cạnh tương ứng bằng nhau)
Vậy DH = CK. (đpcm)