cho tam giác ABC có m , n lần lượt là trung điểm của các cạnh bc và ac. trên tia đối củgiúpa tia nm lấy d sao cho mn = nd. Gọi I là trung điểm của đoạn AM.
a) CM : MD // AB và MD = AB
b) CM AD=BM
còn men nào ngó ngàng tới app này thì giúp mik vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Ta có: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM}\)
=>\(\widehat{DAM}=\widehat{EAM}\)
Xét ΔDAM và ΔEAM có
DA=EA
\(\widehat{DAM}=\widehat{EAM}\)
AM chung
Do đó: ΔDAM=ΔEAM
=>MD=ME
c: Xét ΔNKD và ΔNMB có
NK=NM
\(\widehat{KND}=\widehat{MNB}\)(hai góc đối đỉnh)
ND=NB
Do đó: ΔNKD=ΔNMB
=>\(\widehat{NKD}=\widehat{NMB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên KD//BM
mà M\(\in\)BC
nên KD//BC
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
Ta có: KD//BC
DE//BC
KD,DE có điểm chung là D
Do đó: K,D,E thẳng hàng
\(\widehat{C}=180^o-\widehat{A}-\widehat{B}=180^o-80^o-60^o=40^o\)
Có \(\widehat{C}< \widehat{B}< \widehat{A}\) suy ra \(AB< AC< BC\).
Xét tứ giác \(ABDC\) có hai đường chéo \(AD,BC\) cắt nhau tại trung điểm mỗi đường nên \(ABDC\) là hình bình hành.
Suy ra \(AB=CD\).
\(AB+AC=AB+CD>AD\) (bất đẳng thức tam giác trong tam giác \(ACD\))
Xét tam giác \(ACD\) có hai trung tuyến \(AN,CM\) cắt nhau tại \(K\) nên \(K\) là trọng tâm tam giác \(ACD\) suy ra \(CK=\dfrac{2}{3}CM\).
Mà \(BC=2CM\) suy ra \(BC=3CK\).
a: Xét tứ giác AMCD có
N là trung điểm của đường chéo AC
N là trung điểm của đường chéo MD
Do đó: AMCD là hình bình hành
b: Ta có: AMCD là hình bình hành
nên AD//MC và AD=MC
hay AD//MB và AD=MB(Vì MB=MC)
Xét tứ giác ABMD có
AD//MB
AD=MB
Do đó: ABMD là hình bình hành
Suy ra: Hai đường chéo AM và BD cắt nhau tại trung điểm của mỗi đường
mà I là trung điểm của AM
nên I là trung điểm của BD
hay B,I,D thẳng hàng
a: Xet ΔANO vuông tại N và ΔBNF vuông tại N có
NA=NB
NO=NF
=>ΔANO=ΔBNF
=>AO=BF và góc NAO=góc NBF
=>AO//BF
b: Xét tứ giác AECO có
P là trung điểm chung của AC và EO
=>AECO là hình bình hành
=>AO//CE và AO=CE; OC//AE và OC=AE
=>FB//CE và FB=CE
Xét tú giác BOCD có
M là trung điểm chung của BC và OD
=>BOCD là hình bình hành
=>BD//OC và BD=OC; OB//DC và OB=DC
=>AE//BD và AE=BD; AF//CD và AF=CD
AE=BD=CO
CD=AF=BO
BF=CE=AO
mà BO=AO=CO
nên AE=BD=CD=AF=BF=CE
=>ĐPCM
a: Xét ΔANO và ΔBNF có
NA=NB
góc ANO=góc BNF
NO=NF
=>ΔANO=ΔBNF
=>AO=BF và góc NAO=góc NBF
=>AO//BF
c: Xét ΔODE có OM/OD=OP/OE
nên MP//DE và MP=1/2DE
Xet ΔBAC có CM/CB=CP/CA=1/2
nên MP//AB và MP=1/2AB
=>DE=AB
Xét ΔODF có OM/OD=ON/OF=1/2
nên MN//FD và MN=1/2FD
Xét ΔBAC có BM/BC=BN/BA=1/2
nên MN//AC và MN=1/2AC
=>FD=AC
Xét ΔOEF có OP/OE=ON/OF=1/2
nên NP//FE và NP=1/2FE
Xét ΔABC có AN/AB=AP/AC
nên NP//BC và NP=1/2BC
=>FE=BC
=>ΔABC=ΔDEF