K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 9 2020

\(\left(2cos2x+5\right)\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)+3=0\)

\(\Leftrightarrow\left(2cos2x+5\right).\left(-cos2x\right)+3=0\)

\(\Leftrightarrow2cos^22x+5cos2x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\frac{1}{2}\\cos2x=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\) \(\Rightarrow x=\left\{\frac{5\pi}{6};\frac{11\pi}{6};\frac{\pi}{6};\frac{7\pi}{6}\right\}\Rightarrow\sum x=4\pi\)

NV
22 tháng 1

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+\dfrac{1}{2}sin\left(4x-\dfrac{\pi}{2}\right)+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)

\(\Leftrightarrow1-\dfrac{1}{2}sin^22x-\dfrac{1}{2}cos4x+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)

\(\Leftrightarrow1-\dfrac{1}{2}\left(\dfrac{1-cos4x}{2}\right)-\dfrac{1}{2}cos4x+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)

\(\Leftrightarrow-\dfrac{3}{4}-\dfrac{1}{4}cos4x+\dfrac{1}{2}sin2x=0\)

\(\Leftrightarrow-\dfrac{3}{4}-\dfrac{1}{4}\left(1-2sin^22x\right)+\dfrac{1}{2}sin2x=0\)

\(\Leftrightarrow...\)

5 tháng 9 2021

1, \(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{sinx+2sinx.sin2x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{sinx+2sinx.sin2x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{sinx+cosx-cos3x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{sinx+cosx+sin3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{2sin2x.cosx+cosx}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{cosx\left(2sin2x+1\right)}{1+2sin2x}=\dfrac{2+2cos^2x}{5}\)

⇒ cosx = \(\dfrac{2+2cos^2x}{5}\)

⇔ 2cos2x - 5cosx + 2 = 0

⇔ \(\left[{}\begin{matrix}cosx=2\\cosx=\dfrac{1}{2}\end{matrix}\right.\)

⇔ \(x=\pm\dfrac{\pi}{3}+k.2\pi\) , k là số nguyên

2, \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\left(1+cot2x.cotx\right)=0\)

⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\dfrac{cos2x.cosx+sin2x.sinx}{sin2x.sinx}=0\)

⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\dfrac{cosx}{sin2x.sinx}=0\)

⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2cosx}{2cosx.sin^4x}=0\)

⇒ \(48-\dfrac{1}{cos^4x}-\dfrac{1}{sin^4x}=0\). ĐKXĐ : sin2x ≠ 0 

⇔ \(\dfrac{1}{cos^4x}+\dfrac{1}{sin^4x}=48\)

⇒ sin4x + cos4x = 48.sin4x . cos4x

⇔ (sin2x + cos2x)2 - 2sin2x. cos2x = 3 . (2sinx.cosx)4

⇔ 1 - \(\dfrac{1}{2}\) . (2sinx . cosx)2 = 3(2sinx.cosx)4

⇔ 1 - \(\dfrac{1}{2}sin^22x\) = 3sin42x

⇔ \(sin^22x=\dfrac{1}{2}\) (thỏa mãn ĐKXĐ)

⇔ 1 - 2sin22x = 0

⇔ cos4x = 0

⇔ \(x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\)

 

5 tháng 9 2021

3, \(sin^4x+cos^4x+sin\left(3x-\dfrac{\pi}{4}\right).cos\left(x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)

⇔ \(\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+\dfrac{1}{2}sin\left(4x-\dfrac{\pi}{2}\right)+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)

⇔ \(1-\dfrac{1}{2}sin^22x+\dfrac{1}{2}sin2x-\dfrac{1}{2}cos4x-\dfrac{3}{2}=0\)

⇔ \(\dfrac{1}{2}sin2x-\dfrac{1}{2}cos4x-\dfrac{1}{2}-\dfrac{1}{2}sin^22x=0\)

⇔ sin2x - sin22x - (1 + cos4x) = 0

⇔ sin2x - sin22x - 2cos22x = 0

⇔ sin2x - 2 (cos22x + sin22x) + sin22x = 0

⇔ sin22x + sin2x - 2 = 0

⇔ \(\left[{}\begin{matrix}sin2x=1\\sin2x=-2\end{matrix}\right.\)

⇔ sin2x = 1

⇔ \(2x=\dfrac{\pi}{2}+k.2\pi\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\)

4, cos5x + cos2x + 2sin3x . sin2x = 0

⇔ cos5x + cos2x + cosx - cos5x = 0

⇔ cos2x + cosx = 0

⇔ \(2cos\dfrac{3x}{2}.cos\dfrac{x}{2}=0\)

⇔ \(cos\dfrac{3x}{2}=0\)

⇔ \(\dfrac{3x}{2}=\dfrac{\pi}{2}+k\pi\)

⇔ x = \(\dfrac{\pi}{3}+k.\dfrac{2\pi}{3}\)

Do x ∈ [0 ; 2π] nên ta có \(0\le\dfrac{\pi}{3}+k\dfrac{2\pi}{3}\le2\pi\)

⇔ \(-\dfrac{1}{2}\le k\le\dfrac{5}{2}\). Do k là số nguyên nên k ∈ {0 ; 1 ; 2}

Vậy các nghiệm thỏa mãn là các phần tử của tập hợp 

\(S=\left\{\dfrac{\pi}{3};\pi;\dfrac{5\pi}{3}\right\}\)

11 tháng 9 2023

Làm sao ra được B?

NV
29 tháng 9 2020

\(\Leftrightarrow1-\frac{1}{2}sin^22x+cos\left(x-\frac{\pi}{4}\right)sin\left(3x-\frac{\pi}{4}\right)-\frac{3}{2}=0\)

Đặt \(x-\frac{\pi}{4}=a\Rightarrow x=a+\frac{\pi}{4}\)

\(\Rightarrow1-\frac{1}{2}sin^2\left(2a+\frac{\pi}{2}\right)+cosa.sin\left(3a+\frac{3\pi}{4}-\frac{\pi}{4}\right)-\frac{3}{2}=0\)

\(\Leftrightarrow1-\frac{1}{2}cos^22a+cosa.cos3a-\frac{3}{2}=0\)

\(\Leftrightarrow2-cos^22a+cos4a+cos2a-3=0\)

\(\Leftrightarrow-cos^22a+2cos^22a-1+cos2a-1=0\)

\(\Leftrightarrow cos^22a+cos2a-2=0\)

\(\Leftrightarrow cos2a=1\Leftrightarrow cos\left(2x-\frac{\pi}{2}\right)=1\)

\(\Leftrightarrow sin2x=1\Rightarrow x=\frac{\pi}{4}+k\pi\)

AH
Akai Haruma
Giáo viên
8 tháng 9 2021

Lời giải:
$2\cos ^22x+5\cos 2x-3=0$

$\Leftrightarrow (2\cos 2x-1)(\cos 2x+3)=0$

$\Leftrightarrow 2\cos 2x-1=0$ (chọn) hoặc $\cos 2x=-3$ (loại)

Vậy $2\cos 2x-1=0$

$\Leftrightarrow \cos 2x=\frac{1}{2}$

$\Rightarrow x=\frac{\pm \pi}{3}+2k\pi$ với $k$ nguyên 

Để nghiệm trong khoảng $(0;2\pi)$ thì $k=0$ với họ nghiệm $(1)$ và $k=1$ với họ nghiệm $(2)$

Vậy nghiệm của pt thỏa đề là:

$x=\frac{\pi}{3}; x=\frac{5}{3}\pi$

Tổng nghiệm: $\frac{\pi}{3}+\frac{5\pi}{3}=2\pi$

 

 

NV
20 tháng 9 2021

c.

\(\Leftrightarrow cos\left(x+12^0\right)+cos\left(90^0-78^0+x\right)=1\)

\(\Leftrightarrow2cos\left(x+12^0\right)=1\)

\(\Leftrightarrow cos\left(x+12^0\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+12^0=60^0+k360^0\\x+12^0=-60^0+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=48^0+k360^0\\x=-72^0+k360^0\end{matrix}\right.\)

2.

Do \(-1\le sin\left(3x-27^0\right)\le1\) nên pt có nghiệm khi:

\(\left\{{}\begin{matrix}2m^2+m\ge-1\\2m^2+m\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m^2+m+1\ge0\left(luôn-đúng\right)\\2m^2+m-1\le0\end{matrix}\right.\)

\(\Rightarrow-1\le m\le\dfrac{1}{2}\)

NV
20 tháng 9 2021

a.

\(\Rightarrow\left[{}\begin{matrix}x+15^0=arccos\left(\dfrac{2}{5}\right)+k360^0\\x+15^0=-arccos\left(\dfrac{2}{5}\right)+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-15^0+arccos\left(\dfrac{2}{5}\right)+k360^0\\x=-15^0-arccos\left(\dfrac{2}{5}\right)+k360^0\end{matrix}\right.\)

b.

\(2x-10^0=arccot\left(4\right)+k180^0\)

\(\Rightarrow x=5^0+\dfrac{1}{2}arccot\left(4\right)+k90^0\)

NV
28 tháng 7 2021

1a.

Đặt \(5x+6=u\)

\(cos2u+4\sqrt{2}sinu-4=0\)

\(\Leftrightarrow1-2sin^2u+4\sqrt{2}sinu-4=0\)

\(\Leftrightarrow2sin^2u-4\sqrt{2}sinu+3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinu=\dfrac{3\sqrt{2}}{2}>1\left(loại\right)\\sinu=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow sin\left(5x+6\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+6=\dfrac{\pi}{4}+k2\pi\\5x+6=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{6}{5}+\dfrac{\pi}{20}+\dfrac{k2\pi}{5}\\x=-\dfrac{6}{5}+\dfrac{3\pi}{20}+\dfrac{k2\pi}{5}\end{matrix}\right.\)

NV
28 tháng 7 2021

1b.

Đặt \(2x+1=u\)

\(cos2u+3sinu=2\)

\(\Leftrightarrow1-2sin^2u+3sinu=2\)

\(\Leftrightarrow2sin^2u-3sinu+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinu=1\\sinu=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(2x+1\right)=1\\sin\left(2x+1\right)=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=\dfrac{\pi}{2}+k2\pi\\2x+1=\dfrac{\pi}{6}+k2\pi\\2x+1=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}+\dfrac{\pi}{4}+k\pi\\x=-\dfrac{1}{2}+\dfrac{\pi}{12}+k\pi\\x=-\dfrac{1}{2}+\dfrac{5\pi}{12}+k\pi\end{matrix}\right.\)

1 tháng 6 2021

\(4\left(sin^4x+cos^4x\right)+sin4x-2=0\)

\(\Leftrightarrow4\left(1-2sin^2x.cos^2x\right)+2sin2x.cos2x-2=0\)

\(\Leftrightarrow2-2sin^22x+2sin2x.cos2x=0\)

\(\Leftrightarrow2\left(1-sin^22x+sin2x.cos2x\right)=0\)

\(\Leftrightarrow2\left(cos^22x+sin2x.cos2x\right)=0\)

\(\Leftrightarrow2cos2x\left(cos2x+sin2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x+sin2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x=-\dfrac{\pi}{8}+\dfrac{k\pi}{2}\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2};x=-\dfrac{\pi}{8}+\dfrac{k\pi}{2}\)