K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2020

5x2 + y2 + 2xy - 6x - 2y - 3 = 0

<=> (x2 + 2xy + y2) - 2(x + y) + 1 + (4x2 - 4x + 1) = 5

<=> (x + y - 1)2 + (2x - 1)2 = 5 = 12 + 22

Do x;y nguyên và 2x - 1 lẻ => 2x - 1 \(\in\){1; -1}

Lập bảng:

x + y - 1 2 2 -2 -2
2x - 1 1 -1 1 -1
 x    
 y    

(tự tính)
 

18 tháng 2

5x2+2y+y2-4x-40=0

△=(-4)2-4.5.(2y+y2-40)

△=16-40y-20y2+800

△=-(784+40y+20y2)

△=-(32y+8y+16y2+4y2+16+4+764)

△=-[(4y+4)2+(2y+2)2+764]<0

=>PHƯƠNG TRÌNH VÔ NGHIỆM.

9 tháng 12 2018

\(3xy+x+15y-44=0\)

\(3y\left(x+5\right)+\left(x+5\right)-49=0\)

\(\left(x+5\right)\left(3y+1\right)=49\)

Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)

Có \(\left(x+5\right)\left(3y+1\right)=49\)

\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)

b tự lập bảng nhé~

14 tháng 9 2016

a)xy-7x-2y=15

=>x(y-7)-2y=15

=>x(y-7)-2y+14=15+14

=>x(y-7)-2(y-7)=29

=>(x-2)(y-7)=29

=>x-2 và y-7 thuộc Ư(29)={1;-1;29;-29}

Với x-2=1 =>x=3 <=> y-7=29 =>y=36

Với x-2=-1 =>x=1 <=>y-7=-29 =>y=-22

Với x-2=29 =>x=31 <=>y-7=1 =>y=8

Với x-2=-29 =>x=-27 <=>y-7=-1 =>y=6

Vậy .....

 

 

14 tháng 9 2016

b)x2+5x-2xy-10y-11=0

<=>x2+5x-2xy-10y=11

<=>(x2-2xy)+(5x-10y)=11

<=>x(x-2y)+5(x-2y)=11

<=>(x+5)(x-2y)=11

=>x+5 và x-2y thuộc Ư(11)={1;-1;11;-11}

Xét x+5=1 =>x=-4 <=>x-2y=11 <=>-4-2y=11 =>y=\(-7\frac{1}{2}\left(loai\right)\)

Xét x+5=11 =>x=6 <=>x-2y=1 <=>6-2y=1 =>y=\(2\frac{1}{2}\left(loai\right)\)

Xét x+5=-1 =>x=-6 <=>-6-2y=-11 =>y=\(2\frac{1}{2}\left(loai\right)\)

Xét x+5=-11 =>x=-16 <=>-16-2y=-11 =>y=\(-2\frac{1}{2}\left(loai\right)\)

Vậy ko có giá trị x,y nguyên nào thỏa mãn

 

9 tháng 2 2023

a) \(\left(x+y+1\right)^3=x^3+y^3+7\)

\(\Leftrightarrow\left(x+y\right)^3+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)

\(\Leftrightarrow3\left(x+y\right)\left(x+y+xy+1\right)=6\)

\(\Leftrightarrow\left(x+y\right)\left[x\left(1+y\right)+1+y\right]=2\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(x+y\right)=2\)

\(\Rightarrow x+1,y+1,x+y\) là các ước của 2.

Ta thấy 6 có 2 dạng phân tích thành tích 3 số nguyên là \(\left(2;1;1\right)\) và\(\left(2;-1;-1\right)\).

- Xét trường hợp \(\left(2;1;1\right)\). Ta có 3 trường hợp nhỏ:

\(\left\{{}\begin{matrix}x+1=2\\y+1=1\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=2\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=1\\x+y=2\end{matrix}\right.\)

Giải ra ta có \(\left(x,y\right)=\left(1;0\right),\left(0;1\right)\).

- Xét trường hợp \(\left(2;-1;-1\right)\). Ta có 3 trường hợp nhỏ:

\(\left\{{}\begin{matrix}x+1=2\\y+1=-1\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=2\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=1\\x+y=2\end{matrix}\right.\).

Giải ra ta có: \(\left(x;y\right)=\left(1;-2\right),\left(-2;1\right)\).

Vậy \(\left(x;y\right)=\left(0;1\right),\left(1;0\right),\left(1;-2\right),\left(-2;1\right)\)

 

 

9 tháng 2 2023

b) \(y^2+2xy-8x^2-5x=2\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(9x^2+5x\right)=2\)

\(\Leftrightarrow\left(x+y\right)^2-9\left(x^2+\dfrac{5}{9}x+\dfrac{25}{324}\right)+\dfrac{25}{36}=2\)

\(\Leftrightarrow\left(x+y\right)^2-9\left(x+\dfrac{5}{18}\right)^2=\dfrac{47}{36}\)

\(\Leftrightarrow6^2.\left(x+y\right)^2-3^2.6^2\left(x+\dfrac{5}{18}\right)^2=47\)

\(\Leftrightarrow\left(6x+6y\right)^2-\left(18x+5\right)^2=47\)

\(\Leftrightarrow\left(6x+6y-18x-5\right)\left(6x+6y+18x+5\right)=47\)

\(\Leftrightarrow\left(6y-12x-5\right)\left(24x+6y+5\right)=47\)

\(\Rightarrow\)6y-12x-5 và 24x+6y+5 là các ước của 47.

Lập bảng:

6y-12x-5147-1-47
24x+6y+5471-47-1
x1\(\dfrac{-14}{9}\left(l\right)\)\(\dfrac{-14}{9}\left(l\right)\)1
y3\(\dfrac{50}{9}\left(l\right)\)\(-\dfrac{22}{9}\left(l\right)\)-5

Vậy pt đã cho có 2 nghiệm (x;y) nguyên là (1;3) và (1;-5)

 

9 tháng 8 2023

\(x^2+2xy+7.\left(x+y\right)+2y^2+10=0\)

\(\Leftrightarrow\left(x+y^2\right)+7.\left(x+y\right)+\dfrac{49}{4}+y^2-\dfrac{9}{4}=0\)

\(\Leftrightarrow\left(x+y+\dfrac{7}{2}^2\right)=\dfrac{9}{4}-y^2\)

\(Do\left(x+y+\dfrac{7}{2}^2\right)\ge0\Rightarrow\dfrac{9}{4}-y^2\ge0\Rightarrow y^2\le\dfrac{9}{4}\)

Mà y nguyên \(\Rightarrow\left\{{}\begin{matrix}y^2\\\\y^2=1\end{matrix}\right.=0\)

Thay vào phương trình đầu: 

Với \(y=0\Rightarrow x^2+7x+10=0\Rightarrow\left\{{}\begin{matrix}x=-2\\\\\\x=-5\end{matrix}\right.\)

Với \(y=1\Rightarrow x^2+9x+19=0\Rightarrow\) không có x nguyên

Với \(y=-1\Rightarrow x^2+5x+5=0\Rightarrow\) không có x nguyên

25 tháng 2 2020

Ta có :

\(2x^2+y^2-6x+2xy-2y+5=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)^2+\left(x-2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y-1\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-1\\x=2\end{cases}}\)