1. Viết chương trình in ra giá trị các biểu thức sau:
T1=1.2.3 + 2.3.4 + 3.4.5 + .....n(n+1)(n+2) T2=1.2.3 - 2.3.4 + 3.4.5 -4.5.6 +.....+n(n+1)(n+2) (Đổi dấu chẵn lẻ) 2. Viết chương trình in ra số ước của một số N được nhập từ bàn phím. In ra số lượng ước của NHãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4N = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 2015.2016.2017.(2018-2014)
4N = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 2015.2016.2017.2018 - 2014.2015.2016.2017
4N = (1.2.3.4 + 2.3.4.5 + 3.4.5.6 + ... + 2015.2016.2017.2018) - (0.1.2.3 + 1.2.3.4 + 2.3.4.5 + ... + 2014.2015.2016.2017)
4N = 2015.2016.2017.2018 - 0.1.2.3
4N = 2015.2016.2017.2018
N = 2015.2016.504.2018 (kq hơi to nên bn tự tính nhé)
4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]
4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4
4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]
4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)
4A = (n – 1).n(n + 1).(n + 2)
A = (n – 1).n(n + 1).(n + 2) : 4.
Đặt
\(A=1\cdot2\cdot3+2\cdot3\cdot4+3\cdot4\cdot5+4\cdot5\cdot6+.......+n\left(n+1\right)\left(n+2\right)\)\(4A=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot4+3\cdot4\cdot5\cdot4+.......+n\left(n+1\right)\left(n+2\right)\cdot4\)\(4A=1\cdot2\cdot3\cdot\left(4-0\right)+2\cdot3\cdot4\cdot\left(5-1\right)+3\cdot4\cdot5\cdot\left(6-2\right)+........+n\left(n+1\right)\left(n+2\right)\left(n+3-n-1\right)\)\(4A=1\cdot2\cdot3\cdot4-0+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+....+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)\(4A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
\(A=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)
Vậy \(A=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)
tao có:
2p=2/1.2.3+2/2.3.4+...+2/n.n(+1)n(n+2)
2p=3-1/1.2.3+4-2/1.2.3+...+(n+2)-n/n.(n+1).(n+2)
2p=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+(n+2)/n.(n+1).(n+2)-n/n.(n+1).(n+2)
2p=1/1.2-1/2.3+1/2.3-1/3.4+...+1/n.(n+1)-1/(n+1).(n+2)
2p=1/1.2-1/(n+1).(n+2)
2p=(n+!).(n+2)-2/(2n+2).(n+2)
suy ra p=(n+1).(n+2)-2/(2n+2).(2n+4)
2s=3-1/1.2.3+4-2/1.2.3+...+50-48/48.49.50
2s=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+50/49.50.48-48/48.50.49
2s=1/1.2-1/2.3+1/2.3-1/3.4+...+1/48.49-1/49.50
2s=1/1.2-1/49.50
'2s=1/2-1/2450
2s=1225/2450-1/2450
2s=1224/2450
s=612/1225
\(P=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)1
\(P=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)
\(P=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(P=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(P=\frac{\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)}{2}\)
S cx tinh giong v
\(1a.\)
Ta có: \(n^4+4=\left(n^2\right)^2+4n^2+4-4n^2=\left(n^2+2\right)^2-\left(2n\right)^2=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\)
Vì \(n^2+2n+2>n^2-2n+2\) với mọi \(n\in N\)
nên để \(n^4+4\) là số nguyên tố thì \(n^2-2n+2=1\) \(\Leftrightarrow\) \(\left(n-1\right)^2=0\) \(\Leftrightarrow\) \(n-1=0\) \(\Leftrightarrow\) \(n=1\)
Vậy, với \(n=1\) thì \(n^4+4\) là số nguyên tố
4N = 1.2.3.4+ 2.3.4.4 + .... + 19.20.21.4
4N = 1.2.3.(4-0) + ...+ 19.20.21.(22-18)
4N = 1.2.3.4 - 0.1.2.3 + .... + 19.20.21.22-18.19.20.21
4N = 19.20.21.22
N = 19.5.21.22
Đặt A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 28.29.30
4A = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 28.29.30.(31-27)
4A = 1.2.3.4 - 0.1.2.3. + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 28.29.30.31 - 27.28.29.30
4A = 28.29.30.31 - 0.1.2.3
4A = 28.29.30.31
\(A=\frac{28.29.30.31}{4}=7.29.30.31=188790\)
Theo cách tính trên ta dễ dàng tính được:
1.2.3 + 2.3.4 + 3.4.5 + ... + (n - 1).n.(n + 1) = \(\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)
Câu 1:
Program HOC24;
var i,p: integer;
t: longint;
begin
write('Nhap P: '); readln(p);
t:=0;
for i:=1 to p do if i mod 2<>0 then t:=t+i;
write('Tong cac so le la: ',t);
readln
end.
Bài 1:
uses crt;
var n,i,t1,t2:integer;
begin
clrscr;
write('Nhap n='); readln(n);
t1:=0;
for i:=1 to n do
t1:=t1+i*(i+1)*(i+2);
t2:=0;
for i:=1 to n do
begin
if i mod 2<>0 then t2:=t2+i*(i+1)*(i+2)
else t2:=t2-i*(i+1)*(i+2);
end;
writeln('T1=',t1);
writeln('T2=',t2);
readln;
end.
Bài 2:
uses crt;
var i,dem,n:integer;
begin
clrscr;
write('Nhap n='); readln(n);
dem:=0;
writeln('Cac uoc cua mot so ',n,' la: ');
for i:=1 to n do
if n mod i=0 then
begin
write(i:4);
dem:=dem+1;
end;
writeln;
writeln('So luong uoc cua ',n,' la: ',dem);
readln;
end.