K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 10 2020

b.

\(\Leftrightarrow\sqrt{2}cos\left(3x+\frac{\pi}{4}\right)=-\sqrt{2}\)

\(\Leftrightarrow cos\left(3x+\frac{\pi}{4}\right)=-1\)

\(\Leftrightarrow3x+\frac{\pi}{4}=\pi+k2\pi\)

\(\Leftrightarrow x=...\)

c.

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x=-\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow sin\left(2x+\frac{\pi}{6}\right)=-\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{6}=-\frac{\pi}{4}+k2\pi\\2x+\frac{\pi}{6}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

21 tháng 7 2019

\(\sqrt{3}-\frac{5}{2}>\sqrt{3}-4\text{ vì }-\frac{5}{2}>-4\)

\(\Rightarrow2.\left(\sqrt{3}-\frac{5}{2}\right)>\sqrt{3}-4\)

\(\Rightarrow2.\sqrt{3}-5>\sqrt{3}-4\)

21 tháng 7 2019

b) vì \(\sqrt{5}-\sqrt{12}< 0\), ta có: 

 \(5\sqrt{5}-2\sqrt{3}=4\sqrt{5}+\sqrt{5}-\sqrt{12}< 4\sqrt{5}< 4\sqrt{5}+6\) 

Vậy \(5\sqrt{5}-2\sqrt{3}< 6+4\sqrt{5}\)

NV
3 tháng 6 2020

\(cos^2x-\left(2sin\frac{x}{2}cos\frac{x}{2}\right)^2=cos^2x-sin^2x=cos2x\)

\(\frac{sin3x}{sinx}-\frac{cos3x}{cosx}=\frac{sin3x.cosx-cos3x.sinx}{sinx.cosx}=\frac{sin\left(3x-x\right)}{\frac{1}{2}sin2x}=\frac{2sin2x}{sin2x}=2\)

\(\frac{cosx+cos3x+cos2x+cos4x}{sinx+sin3x+sin2x+sin4x}=\frac{2cosx.cos2x+2cosx.cos3x}{2sin2x.cosx+2sin3x.cosx}=\frac{2cosx\left(cos2x+cos3x\right)}{2cosx\left(sin2x+sin3x\right)}\)

\(=\frac{cos2x+cos3x}{sin2x+sin3x}=\frac{2cos\frac{x}{2}.cos\frac{5x}{2}}{2sin\frac{5x}{2}.cos\frac{x}{2}}=cot\frac{5x}{2}\)