cho tam giác abc nhọn đường cao ad be cf. trên be và cf lấy điểm p và q sao cho góc aqb=góc apc +90 độ. chứng minh tam giác aqd cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
góc BAE chung
Do đó: ΔABE=ΔACF
=>BE=CF
b:
Sửa đề Chứng minh BE+CF>BH+CH
BE>BH
CF>CH
=>BE+CF>BH+CH
a) Xét tam giác ABE vuông tại E và tam giác ACF vuông tại F có:
\(\hept{\begin{cases}BAC+ABE=90\\BAC+ACF=90\end{cases}}\) => ABE=ACF
=> 180-ABE=180-ACF =>ABG=HCA
Xét tam giác AGB và tam giác HAC có:
AB=HC (gt)
ABG=HCA (CMT)
GB=AC (gt)
=> Tam giác AGB= Tam giác HAC (c.g.c) (ĐPCM)
=>AG=HA (hai góc tương ứng ) => Tam giác AGH cân tại A (1)
=> GAB=AHC (hai góc tương ứng)
Xét tam giác AFH vuông tại F có :
FAH+AHC=90 (định lí tổng 3 goác 1 tam giác )
=> FAH+GAB=90 (vì GAB=AHC cmt)
=>GAH=90 (2) Từ (1) và (2) suy ra: AGH vuông cân tại A (ĐPCM)
b) 1)Theo a, có: Tam giác AGB= Tam giác HAC
=> AG=HA ( hai cạnh tương ứng)
=> Tam giác AGH cân tại A
Mà M là trung điểm của GH => AM là trung tuyến đồng thời là đường cao
=> AM vuông góc với GH
=> AMN=90 =>Tam giác MIN vuông tại M
=>MIN+IMN+MNI=180 (định lí tổng ba góc 1 tam giác)
=>MNI=180-90-MIN=90-MIN (1)
Gọi giao điểm của AO và BC là K, giao điểm của AM và BC là I
Vì O là giao điểm hai đường vuông góc BE và CF của tam giác ABC nên AO là đường vuông góc thứ ba của tam giác này
=> AKN=90 => Tam giác AKI vuông tại K
=> IAK+AKI+AIK=180
=>IAK=180-90-AIK=90-AIK (2)
Từ (1) và (2) có: MNI=90-MIN, IAK=90-AIK
Mà MIN và AIK đối đỉnh => MNI=IAK =>BNG=OAM (ĐPCM)
2) Ta có AB < AC mà AC = BG
=> AB < BG
=>AGB < GAB mà AGB = HAC (câu a)
=>HAC < GAB (1)
Tam giác AGH cân tại A, đường trung tuyến AM
=> GAM = HAM (2).
Từ (1) và (2) => BAM = GAM - GAB < HAM - HAC = MAC (ĐPCM)
a: AC<AB
nên \(\widehat{B}< \widehat{C}\)
\(\Leftrightarrow90^0-\widehat{B}>90^0-\widehat{C}\)
hay \(\widehat{BAH}>\widehat{CAH}\)
b: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABD cân tại A
a: AC<AB
nên ˆB<ˆCB^<C^
⇔900−ˆB>900−ˆC⇔900−B^>900−C^
hay ˆBAH>ˆCAHBAH^>CAH^
b: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABD cân tại A