K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2020

đk: \(-\sqrt{5}\le x\le\sqrt{5}\)

*) Ta có: \(M^2=\left(2x+\sqrt{5-x^2}\right)^2\le\left(2^2+1^2\right)\left(x^2+5-x^2\right)=25\Rightarrow M^2\le25\Rightarrow-5\le M\le5\)

Nếu M=5 thì \(M^2=25\)

Dấu '=' xảy ra khi và chỉ khi \(\frac{x}{2}=\sqrt{5-x^2}\)và \(x^2\le5\Leftrightarrow x=2\)

Vậy Max M=5 khi x=2

*) Theo trên thì \(-5\le M\le5\)nhưng GTNN của M không bằng -5 vì \(-\sqrt{5}\le x\le\sqrt{5}\Rightarrow M\ge-2\sqrt{5}\)

Vậy Min M = \(-2\sqrt{5}\)khi \(x=-\sqrt{5}\)

14 tháng 10 2020

ĐK: \(-\sqrt{5}\le x\le\sqrt{5}\)

Ta có \(M^2=\left(2x+\sqrt{5-x^2}\right)\le\left(2^2+1\right)\left(x^2+5-x^2\right)=25\)

\(\Rightarrow M\le25\Rightarrow-5\le M\le5\)

Nếu M=5 thì M2=25 dấu BĐT xảy ra \(\Leftrightarrow\frac{x}{2}=\sqrt{5-x^2}\)và \(x^2\le5\Leftrightarrow x=2\)

vậy maxM=5 khi x=2

Theo trên thì -5 \(\le M\le5\)nhưng giá trị nhỏ nhất của M không bằng -5 vì \(-\sqrt{5}\le x\le\sqrt{5}\)=> M\(\ge-2\sqrt{5}\)

Vậy minM=\(-2\sqrt{5}\)khi x\(=-\sqrt{5}\)

22 tháng 2 2018

Ta có: \(\left(x-2\right)^2.\left(y-3\right)=-4=\left(-1\right).4=\left(-4\right).1=\left(-2\right).2=2.\left(-2\right)\)

Nếu \(\left(x-2\right)^2=1\Rightarrow x-2=\pm1\Rightarrow x=\left\{3;1\right\}\)

          \(y-3=-4\Rightarrow y=-1\)

Nếu \(\left(x-2\right)^2=-4\) => Ko thực hiện được (vì bình phương một số không thể bằng một số âm) (Loại)

Nếu \(\left(x-2\right)^2=2\) (loại, ko đúng)

Nếu \(\left(x-2\right)^2=-2\) ( Không thực hiện được) (Loại)

Vậy (x;y) = (3;-1) ; (1;-1) 

5 tháng 4 2019

\(P=\frac{2x-1}{x^2-2}\left(ĐKXĐ:x\ne\pm\sqrt{2}\right)\)

\(\Leftrightarrow Px^2-2P=2x-1\)

\(\Leftrightarrow Px^2-2x-2P+1=0\)

*Nếu P = 0 thì ....

*Nếu P khác 0 thì pt trên là bậc 2

\(\Delta'=1-P\left(2P+1\right)=-2P^2-P+1\)

Có nghiệm thì \(\Delta'\ge0\Leftrightarrow-1\le P\le\frac{1}{2}\)

Nên Pmin = -1 

Đến đây dạng này khi biết kết quả thì phân tích dễ r ha , từ làm nốt câu còn lại nhé , tương tự luôn

5 tháng 4 2019

denta ak bạn 

AH
Akai Haruma
Giáo viên
31 tháng 10 2021

Lời giải:

$\frac{5^5}{5^x}=5^{18}$
$5^{5-x}=5^{18}$

$5-x=18$

$x=-13$

7 tháng 8 2018

1) |3x - 3/2| - 1/4 = x - 1/2

= 3x - 3/2 - 1/4 = x - 1/2

= 3x - x = 3/2 + 1/4 - 1/2

2x = 5/4

x = 5/4 : 2

x = 5/8

7 tháng 8 2018

2) 5/3 - |1/3x + 2/3 | = 1 - x

= 5/3 - 1/3x + 2/3 = 1-x 

= -1/3x + x = -5/3 - 2/3 + 1

= 2/3x = -4/3

x = -4/3 : 2/3

x = -2

29 tháng 1 2017

Bài 1:

Ta có: \(-\left|2x+6\right|\le0\)

\(\Rightarrow9-\left|2x+6\right|\le9\)

\(\Rightarrow5-\left(9-\left|2x+6\right|\right)\le5\)

Dấu "=" xảy ra <=> 2x + 6 = 9 <=> x = \(\frac{3}{2}\)

Vậy GTNN của A là 5 khi x = \(\frac{3}{2}\)

Bài 2:

Ta có: \(\left|2x+6\right|\ge0\)

\(\Rightarrow\left|2x+6\right|-3\ge-3\)

\(\Rightarrow-5-\left(\left|2x+6\right|-3\right)\ge-5\)

Dấu "=" xảy ra <=> 2x + 6 = 3 <=> x = \(-\frac{3}{2}\)

Vậy GTLN của A là -5 khi x = \(-\frac{3}{2}\)

28 tháng 9 2016

\(A^2=\left(\sqrt{2}.\sqrt{2}x+1.\sqrt{4-2x^2}\right)^2\le\left(\sqrt{2}^2+1^2\right)\left(2x^2+4-2x^2\right)=12\)

\(\Rightarrow\left|A\right|\le\sqrt{12}=2\sqrt{3}\)

\(\Rightarrow-2\sqrt{3}\le A\le2\sqrt{3}\)

Từ đó tìm được Max Min

19 tháng 8 2017

GTNN của A:

Khi \(x< -98:A=1-x-x-98=-2x-97>99\)

Khi \(-98\le x< 1:A=1-x+x+98=99\)

Khi \(x\ge1:A=x-1+x+98=2x+97\ge99\)

Vậy GTNN của A là 99 khi \(-98\le x\le1.\)

Tượng tự với biểu thức B và C.

\(\left(2x-5\right)^{200}+|x+1|=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-5=0\\x+1=0\end{cases}}\)(vì \(\left(2x-5\right)^{200}\ge0;|x+1|\ge0\))

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\x=-1\end{cases}}\)

Vậy không có giá trị nào của x.

19 tháng 8 2017

Khi \(x< -1:B=-x-1-x+2-x+5=-3x+6>9\)

Khi \(-1\le x< 2:B=x+1-x+2-x+5=-x+8>6\)

Khi \(2\le x< 5:B=x+1+x-2-x+5=x+4\ge6\)

khi \(x\ge5:B=x+1+x-2+x-5=3x-6\ge9\)

Vậy GTNN của B là 6 khi \(2\le x< 5\)

Tìm GTNN của C tương tự.