tìm gtnn và gtln của M= 2x+\(\sqrt{5-x^2}\)
mình cần gấp lắm ai làm đầu tiên tui tick cho!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(x-2\right)^2.\left(y-3\right)=-4=\left(-1\right).4=\left(-4\right).1=\left(-2\right).2=2.\left(-2\right)\)
Nếu \(\left(x-2\right)^2=1\Rightarrow x-2=\pm1\Rightarrow x=\left\{3;1\right\}\)
\(y-3=-4\Rightarrow y=-1\)
Nếu \(\left(x-2\right)^2=-4\) => Ko thực hiện được (vì bình phương một số không thể bằng một số âm) (Loại)
Nếu \(\left(x-2\right)^2=2\) (loại, ko đúng)
Nếu \(\left(x-2\right)^2=-2\) ( Không thực hiện được) (Loại)
Vậy (x;y) = (3;-1) ; (1;-1)
\(P=\frac{2x-1}{x^2-2}\left(ĐKXĐ:x\ne\pm\sqrt{2}\right)\)
\(\Leftrightarrow Px^2-2P=2x-1\)
\(\Leftrightarrow Px^2-2x-2P+1=0\)
*Nếu P = 0 thì ....
*Nếu P khác 0 thì pt trên là bậc 2
\(\Delta'=1-P\left(2P+1\right)=-2P^2-P+1\)
Có nghiệm thì \(\Delta'\ge0\Leftrightarrow-1\le P\le\frac{1}{2}\)
Nên Pmin = -1
Đến đây dạng này khi biết kết quả thì phân tích dễ r ha , từ làm nốt câu còn lại nhé , tương tự luôn
Lời giải:
$\frac{5^5}{5^x}=5^{18}$
$5^{5-x}=5^{18}$
$5-x=18$
$x=-13$
Bài 1:
Ta có: \(-\left|2x+6\right|\le0\)
\(\Rightarrow9-\left|2x+6\right|\le9\)
\(\Rightarrow5-\left(9-\left|2x+6\right|\right)\le5\)
Dấu "=" xảy ra <=> 2x + 6 = 9 <=> x = \(\frac{3}{2}\)
Vậy GTNN của A là 5 khi x = \(\frac{3}{2}\)
Bài 2:
Ta có: \(\left|2x+6\right|\ge0\)
\(\Rightarrow\left|2x+6\right|-3\ge-3\)
\(\Rightarrow-5-\left(\left|2x+6\right|-3\right)\ge-5\)
Dấu "=" xảy ra <=> 2x + 6 = 3 <=> x = \(-\frac{3}{2}\)
Vậy GTLN của A là -5 khi x = \(-\frac{3}{2}\)
\(A^2=\left(\sqrt{2}.\sqrt{2}x+1.\sqrt{4-2x^2}\right)^2\le\left(\sqrt{2}^2+1^2\right)\left(2x^2+4-2x^2\right)=12\)
\(\Rightarrow\left|A\right|\le\sqrt{12}=2\sqrt{3}\)
\(\Rightarrow-2\sqrt{3}\le A\le2\sqrt{3}\)
Từ đó tìm được Max Min
GTNN của A:
Khi \(x< -98:A=1-x-x-98=-2x-97>99\)
Khi \(-98\le x< 1:A=1-x+x+98=99\)
Khi \(x\ge1:A=x-1+x+98=2x+97\ge99\)
Vậy GTNN của A là 99 khi \(-98\le x\le1.\)
Tượng tự với biểu thức B và C.
\(\left(2x-5\right)^{200}+|x+1|=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-5=0\\x+1=0\end{cases}}\)(vì \(\left(2x-5\right)^{200}\ge0;|x+1|\ge0\))
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\x=-1\end{cases}}\)
Vậy không có giá trị nào của x.
Khi \(x< -1:B=-x-1-x+2-x+5=-3x+6>9\)
Khi \(-1\le x< 2:B=x+1-x+2-x+5=-x+8>6\)
Khi \(2\le x< 5:B=x+1+x-2-x+5=x+4\ge6\)
khi \(x\ge5:B=x+1+x-2+x-5=3x-6\ge9\)
Vậy GTNN của B là 6 khi \(2\le x< 5\)
Tìm GTNN của C tương tự.
đk: \(-\sqrt{5}\le x\le\sqrt{5}\)
*) Ta có: \(M^2=\left(2x+\sqrt{5-x^2}\right)^2\le\left(2^2+1^2\right)\left(x^2+5-x^2\right)=25\Rightarrow M^2\le25\Rightarrow-5\le M\le5\)
Nếu M=5 thì \(M^2=25\)
Dấu '=' xảy ra khi và chỉ khi \(\frac{x}{2}=\sqrt{5-x^2}\)và \(x^2\le5\Leftrightarrow x=2\)
Vậy Max M=5 khi x=2
*) Theo trên thì \(-5\le M\le5\)nhưng GTNN của M không bằng -5 vì \(-\sqrt{5}\le x\le\sqrt{5}\Rightarrow M\ge-2\sqrt{5}\)
Vậy Min M = \(-2\sqrt{5}\)khi \(x=-\sqrt{5}\)
ĐK: \(-\sqrt{5}\le x\le\sqrt{5}\)
Ta có \(M^2=\left(2x+\sqrt{5-x^2}\right)\le\left(2^2+1\right)\left(x^2+5-x^2\right)=25\)
\(\Rightarrow M\le25\Rightarrow-5\le M\le5\)
Nếu M=5 thì M2=25 dấu BĐT xảy ra \(\Leftrightarrow\frac{x}{2}=\sqrt{5-x^2}\)và \(x^2\le5\Leftrightarrow x=2\)
vậy maxM=5 khi x=2
Theo trên thì -5 \(\le M\le5\)nhưng giá trị nhỏ nhất của M không bằng -5 vì \(-\sqrt{5}\le x\le\sqrt{5}\)=> M\(\ge-2\sqrt{5}\)
Vậy minM=\(-2\sqrt{5}\)khi x\(=-\sqrt{5}\)