1. cho 4x2-7x+3 / 1-x2 = A / x2+2x+1
a. tính đa thức A
b. tính giá trị của A tại / x-2/=1
c. tính x để A=0
d. tìm GTLN của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(M=A+B=x^3-2x^2+1+2x^2-1=x^3\)
b: Thay x=1/2 vào M, ta được: \(M=\left(\dfrac{1}{2}\right)^3=\dfrac{1}{8}\)
c: Để M=0 thì x3=0
hay x=0
b) Thay x=-1; y=1 và z=-2 vào B, ta được:
\(B=\dfrac{3\cdot\left(-1\right)\cdot1\cdot\left(-2\right)-2\cdot\left(-2\right)^2}{\left(-1\right)^2+1}=\dfrac{6-8}{1+1}=\dfrac{-2}{2}=-1\)
a:
ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b: \(A=\left(\dfrac{x-2}{2x-2}+\dfrac{3}{2x-2}-\dfrac{x+3}{2x+2}\right):\left(1-\dfrac{x-3}{x+1}\right)\)
\(=\left(\dfrac{x-2}{2\left(x-1\right)}+\dfrac{3}{2\left(x-1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right):\dfrac{x+1-x+3}{x+1}\)
\(=\dfrac{\left(x-2\right)\left(x+1\right)+3\left(x+1\right)-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{x^2-x-2+3x+3-x^2-2x+3}{2\left(x-1\right)}\cdot\dfrac{1}{2}\)
\(=\dfrac{-2}{4\left(x-1\right)}=\dfrac{-1}{2\left(x-1\right)}\)
Khi x=2005 thì \(A=\dfrac{-1}{2\cdot\left(2005-1\right)}=-\dfrac{1}{4008}\)
Vì x=1 không thỏa mãn ĐKXĐ
nên khi x=1 thì A không có giá trị
c: Để A=-1002 thì \(\dfrac{-1}{2\left(x-1\right)}=-1002\)
=>\(2\left(x-1\right)=\dfrac{1}{1002}\)
=>\(x-1=\dfrac{1}{2004}\)
=>\(x=\dfrac{1}{2004}+1=\dfrac{2005}{2004}\left(nhận\right)\)
a) Thay `x=2` vào đa thức, ta có: `A(2)=2^2-2.2=0`
b) Các nghiệm của đa thức `A(x)` là:
`A(x)=0 `
`-> x^2-2x=0`
`->x(x-2)=0`
`->` \(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
a) Thay x = 2 vào đa thức A(x), ta có:
A(2) = 22 - 2.2 = 0
b) Xét A(x) = 0
<=> x2 - 2x = 0
<=> x(x-2)=0
<=> \(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy A(x) có nghiệm x \(\in\left\{0;2\right\}\)
a: \(C=A+B=x^2-4x+1+2x^2+x=3x^2-3x+1\)
b: Bậc của C là 2
c: Khi x=-1 thì \(C=3\cdot\left(-1\right)^2-3\cdot\left(-1\right)+1=3+1+3=7\)
Ta có
\(\frac{4x^2-7x+3}{1-x^2}=\frac{A}{x^2+2x+1}\)
<=>\(\frac{\left(4x-3\right)\left(x-1\right)}{\left(1-x\right)\left(1+x\right)}=\frac{A}{\left(x+1\right)^2}\)
<=>\(A=\frac{\left(3-4x\right)\left(x-1\right)\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\left(3-4x\right)\left(x+1\right)\)
<=>\(A=3x-4x^2+3-4x=-4x^2-x+3\)
b
Với \(x\ge2\)
=>/x-2/=x-2
Vậy ta có
x-2=1
<=>x=3
Với x=3=>A=...
Với x<2
=>/x-2/=2-x
Vậy ta có
2-x=1
=>x=1
=>A=....
c,Ta có
\(A=0<=>-4x^2-x+3=0\)
<=>\(\left(3-4x\right)\left(x+1\right)=0\)
<=>\(x=\frac{3}{4};x=-1\)
d
Ta có
\(-A=4x^2+x-3=4\left(x^2+\frac{1}{4}x-\frac{3}{4}\right)=4\left(x+\frac{1}{2}\right)^2-4\)
=>\(A=-4\left(x+\frac{1}{2}\right)^2+4\le4\)
Dấu = xảy ra <=>x=-1/2
Nhớ tick cho mình nhak. cảm ơn nhiều