cho a/b=c/d. chứng minh rằng: 2a+b/b=2c+d/d
a.2a+b/b=2c+d/d
b.a^2020+c^2020/b^2020+d^2020=(a+b)^2020/(b+d)^2020
c.a^2+c^2/b^2+a^2=a.c/b.d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}.\)
=> \(\frac{a^{2020}}{c^{2020}}=\frac{b^{2020}}{d^{2020}}=\frac{\left(a+b\right)^{2020}}{\left(b+d\right)^{2020}}\)
Xong lại áp dụng tính chất dãy tỉ số = nhau \(\frac{a^{2020}}{c^{2020}}=\frac{b^{2020}}{d^{2020}}=\frac{a^{2020}-b^{2020}}{c^{2020}-d^{2020}}.\)
Kết hợp lại là ra nhé
Ta có : a2020 - b2020 + c2020/b2020 - c2020 + d2020
= (a-b+c)2020/(b-c+d)2020 =(a-b+c/b-c+d)2020 (dpcm)
Ko khó đâu bn ơi
Đặt a/b=c/d=k
=> a=bk và c=dk
Xong thay vào (a^2020-b^2020)/(a^2020+b^2020)=(b^2020.k^2020-b^2020)/(b^2020.k^2020+b^2020)
= (k^2020-1)/(k^2020+1)
Tiếp tục thay vào (c^2020-d^2020)/(c^2020+d^2020)=(d^2020.k^2020-d^2020)/(d^2020.k^2020+d^2020)
= (k^2020-1)/(k^2020+1)
=> đpcm.
a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)
\(=4x^2-20x+25-4x^2+20x\)
=25
b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)
\(=16-9x^2+9x^2+6x+1\)
=6x+17
c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)
\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)
=1
d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)
\(=\left(2021x-2020-2020x+2021\right)^2\)
\(=\left(x+1\right)^2\)
\(=x^2+2x+1\)
Ta có: a^2 + b^2 = c^2 + d^2 => a^2 − c^2 = d^2 − b^2
=>a2−c2=d2−b2
=> (a−c)(a+c)=(d−b)(d+b)(1)
Lại có: a + b = c + d
=> a − c = d − b
+) Nếu a=b=c=d
=>a^2020 + b^2020 = c^2020+d^2020
+) Nếu a ≠ b ≠ c≠d
Khi đó (1) trở thành: a + c = b + d (2)
Mà a+b=c+d (3)
Cộng theo vế của (2) và (3)
2 a + b + c = b + c + 2 d
=>2 a = 2 d ⇒ a = d = b = c ⇒2a=2b=2c=2d⇒a^2020 + b^2020 = c^2020+d^2020
Vậy ta luôn có a^2020 + b^2020 = c^2020+d^2020 với điều kiện của đề.
Học tốt !
Ta có a + b = c + d
=> (a + b)2 = (c + d)2
=> a2 + b2 + 2ab = c2 + d2 + 2cd
=> 2ab = 2cd
=> ab = cd
Khi đó a + b = c + d
=> (a + b)2020 = (c + d)2020
=> a2020 + b2020 + 2020a.b2019 + 2020a2019.b = c2 + d2 + 2020cd2019 + 2020c2019d
=> 2020ab(a2018 + b2018) + a2020 + b2020 = c2020 + d2020 + 2020cd(d2018 + c2018)
a)Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\left(a,b,c,d\ne0\right)\)\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\left(c\ne d,a\ne b\right)\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\)
b)a)Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a+2019}{a-2019}=\frac{b+2020}{b-2020}\left(đk:a\ne\pm2019,b\ne\pm2020\right)\)\(\Leftrightarrow\frac{a+2019}{b+2020}=\frac{a-2019}{b-2020}=\frac{a+2019+a-2019}{b+2020+b-2020}=\frac{\left(a+2019\right)-\left(a-2019\right)}{\left(b+2020\right)-\left(b-2020\right)}=\frac{a}{b}=\frac{2019}{2020}\left(a,b\ne0\right)\left(đpcm\right)\)