nếu 10^n-1 chia hết 13 thì 10^2n +1 chia 13 dư ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bg
C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))
=> n = 11k + 4 (với k \(\inℕ\))
=> n2 = (11k)2 + 88k + 42
=> n2 = (11k)2 + 88k + 16
Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5
=> n2 chia 11 dư 5
=> ĐPCM
C2: Ta có: n = 13x + 7 (với x \(\inℕ\))
=> n2 - 10 = (13x)2 + 14.13x + 72 - 10
=> n2 - 10 = (13x)2 + 14.13x + 39
Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13
=> n2 - 10 \(⋮\)13
=> ĐPCM
10n -1 luôn có dạng 99....
102n -1 cũng luôn có dạng 99....
vì vậy 102n -1 cũng sẽ chia hết cho 13
tick mình nha an nguyễn
ta co: \(10^{2n}-1=10^{2n}+10^n-10^n-1\)
\(=\left(10^{2n}-10^n\right)+\left(10^n-1\right)\) \(=10^n\left(10^n-1\right)+\left(10^n-1\right)\)
Vi \(10^n-1\) chia het cho 13 suy ra \(10^n\left(10^n-1\right)+\left(10^n-1\right)\)chia het cho 13
hay \(10^{2n}-1\) chia het cho 13
hay so du cua \(10^{2n}-1\) khi chia cho 13 la 0
Minh chac chan 100%
tick cho minh nha **********
Cho n là số tự nhiên thỏa mãn 10n _ 1:13. Khi đó số dư của 102n + 1 chia cho 13 là ?
CM. Ta có thể viết 100...01 = 103n+ 1, trong đó n là số nguyên dương. Sử dụng hằng đẳng thức a3+ b3= (a+b)(a2- a b + b2) với a = 10nvà b = 1, ta thu được (10n)3+ 1 = (10n+ 1)(102n- 10n+ 1). Do (10n+ 1) > 1 và (102n- 10n+ 1) > 1 khi n là nguyên dương nên ta có đpcm.
bạn tham khảo nha