K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2023

A B C M D E N I

a/

Xét tg AMB và tg MNC có

MB=MC (giả thiết)

MA=MN (giả thiết)

\(\widehat{AMB}=\widehat{NMC}\) (góc đối đỉnh)

=> tg AMB = tg NMC (c.g.c)

b/ Nối A với I cắt BD tại M'

Xét tg ADE có

BE=BA (gt) => DE là trung tuyến của tg ADE

IE=ID (gt) => AI là trung tuyến của tg ADE

=> M' là trọng tâm của tg ADE => \(BM'=\dfrac{1}{3}BD\) (1)

Ta có

MB=MC (gt); MC=CD (gt) => MB=MC=CD

BD=MB+MC+CD

=> \(BM=\dfrac{1}{3}BD\) (2)

Từ (1) và (2) => \(M'\equiv M\)

=> A; M; I thẳng hàng

 

 

 

9 tháng 12 2017

trả lời nhanh giúp mình nha^^. thank các bạn nhìu

a: Sửa đề: Chứng minh ΔABM=ΔACM

Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

c: Xét ΔIAB và ΔICE có

IA=IC

\(\widehat{AIB}=\widehat{CIE}\)(hai góc đối đỉnh)

IB=IE

Do đó: ΔIAB=ΔICE

=>\(\widehat{IAB}=\widehat{ICE}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CE

Ta có: AB//CE

AB//CD

CD,CE có điểm chung là C

Do đó: D,C,E thẳng hàng

Ta có: AB=CE(ΔIAB=ΔICE)

AB=CD(ΔIAB=ΔIDC)

Do đó: CE=CD
mà D,C,E thẳng hàng

nên C là trung điểm của DE

10 tháng 12 2020

a/ Xét t/g AMD và t/g BMC có

AM = BM (M là TĐ AB)

\(\widehat{AMD}=\widehat{BMC}\) (đối đỉnh) MD = MC (GT)

=> t/g AMD = t/g BMC (c.g.c)

b/ Xets t/g BMD và t/g AMC có

BM = AM

\(\widehat{BMD}=\widehat{AMC}\)(đối đỉnh) MD = MC (GT)

=> t/g BMD = t/g AMC (c.g.c)

=> \(\widehat{ABD}=\widehat{BAC}=90^o\)

=> BD ⊥ AB (1)

c/  Xét t/g BNE và t/g CNA có

BN = CN (N là TĐ BC)

\(\widehat{BNE}=\widehat{CNA}\) (đối đỉnh) NE = NA (GT)

=> T/g BNE = t/g CNA (c.g.c)

=> \(\widehat{EBN}=\widehat{CAB}=90^o\) (2 góc t/ứ)

=> BE ⊥ AB (2) Từ (1) và (2)

=> D , B , E thẳng hàng