Cho các tập hợp A={ x thuộc R/ 2x<3},B={x thuộc R/-3x<√6}
a.xác định các tập A,B
b. Tìm A hợp B ,A hiệu B,phần bù của A hợp B,phần bù của A hiệu B.
c.tập A giao B có bao nhiêu phần tử là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A=[1;+∞)
B=(-∞;3]
b: A giao B=[1;3]
A hợp B=R
A\B=(3;+∞)
B\A=(-∞;1)
a: A={x\(\in R\)|x^2+x-6=0 hoặc 3x^2-10x+8=0}
=>x^2+x-6=0 hoặc 3x^2-10x+8=0
=>(x+3)(x-2)=0 hoặc (x-2)(3x-4)=0
=>\(x\in\left\{-3;2;\dfrac{4}{3}\right\}\)
=>A={-3;2;4/3}
B={x\(\in\)R|x^2-2x-2=0 hoặc 2x^2-7x+6=0}
=>x^2-2x-2=0 hoặc 2x^2-7x+6=0
=>\(x\in\left\{1+\sqrt{3};1-\sqrt{3};2;\dfrac{3}{2}\right\}\)
=>\(B=\left\{1+\sqrt{3};1-\sqrt{3};2;\dfrac{3}{2}\right\}\)
A={-3;2;4/3}
b: \(B\subset X;X\subset A\)
=>\(B\subset A\)(vô lý)
Vậy: KHông có tập hợp X thỏa mãn đề bài
\(A=\left\{-2;0;2;4;8\right\}\\ B=\left\{-2;-1;0;1;2\right\}\\ \left(x^2-2x-3\right)\left(x^2-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\Leftrightarrow C=\left\{-\sqrt{3};-1;\sqrt{3};3\right\}\)
\(a,A\cap\left(B\cap C\right)=A\cap\left\{-1\right\}=\varnothing\\ b,A\cup\left(B\cap C\right)=A\cup\left\{-1\right\}=\left\{-2;-1;0;2;4;8\right\}\\ c,câu.a.làm.r\\ d,A\backslash\left(B\cap C\right)=A\backslash\left\{-1\right\}=\left\{-2;0;2;4;8\right\}\\ e,A\backslash\left(B\C\right)=A\backslash\left\{-2;0;1;2\right\}=\left\{4;8\right\}\)
Câu 2:
\(\left(A\cup B\right)\cap C=A\cap C=[1;+\infty)\cap\left(0;4\right)=[1;4)\)
Tập này có 3 phần tử nguyên
\(2x< 3\Rightarrow x< \frac{3}{2}\)
\(\Rightarrow A=\left(-\infty;\frac{3}{2}\right)\)
\(-3x< \sqrt{6}\Rightarrow x>-\frac{\sqrt{6}}{3}\)
\(\Rightarrow B=\left(-\frac{\sqrt{6}}{3};+\infty\right)\)
\(A\cup B=R\)
\(A\backslash B=(-\infty;-\frac{\sqrt{6}}{3}]\)
\(C_R^{A\cup B}=\varnothing\)
\(C_R^{A\backslash B}=B\)
\(A\cap B=\left(-\frac{\sqrt{6}}{3};\frac{3}{2}\right)\) có 2 số nguyên (0 và 1)
Cảm ơn bạn 🙂