cho 2 số a,b thỏa mãn a³ + b³ + 3(a² + b²) + 4(a + b) + 4 = 0. tính giá trị biểu thức 2020(a+b)
giúp tớ với :((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3-a^2b+ab^2-6b^3=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)
Vì a>b>0 =>a2+ab+3b2>0 nên từ (1) ta có a=2b
Vậy biểu thức \(A=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)
Lời giải:
$ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{9^2-27}{2}=27$
$\Rightarrow a^2+b^2+c^2=ab+bc+ac$
$\Leftrightarrow 2(a^2+b^2+c^2)=2(ab+bc+ac)$
$\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Vì $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c$ nên để tổng của chúng bằng $0$ thì $(a-b)^2=(b-c)^2=(c-a)^2=0$
$\Rightarrow a=b=c$
Mà $a+b+c=9$ nên $a=b=c=3$.
Khi đó:
$(a-4)^{2021}+(b-4)^{2022}+(c-4)^{2023}=(-1)^{2021}+(-1)^{2022}+(-1)^{2023}$
$=(-1)+1+(-1)=-1$
\(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4=0\)
<=> \(\left(a+1\right)^3+\left(b+1\right)^3+\left(a+1\right)+\left(b+1\right)=0\)
<=> \(\left(a+1+b+1\right)\left[\left(a+1\right)^2+\left(b+1\right)^2-\left(a+1\right)\left(b+1\right)+1\right]=0\)
<=> \(a+b+2=0\)
<=> a + b = - 2
Khi đó: 2020 (a +b ) = 2020. ( -2) = -4040