K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2020

\(ĐKXĐ:x\ne-1;x\ne2\)

\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5x+5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow\frac{x-2-5x-5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow x-2-5x-5=15\)

\(\Leftrightarrow-4x=22\Leftrightarrow x=\frac{-11}{2}\)

Vậy \(S=\left\{\frac{-11}{2}\right\}\)

28 tháng 1 2020

\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(x-2\right)}\left(ĐKXĐ:x\ne-1;x\ne2\right)\)

\(\Leftrightarrow\frac{1\left(x-2\right)-5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow\frac{x-2-5x-5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow\frac{-4x-7}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow-4x-7=15\)

\(\Leftrightarrow-4x=22\)

\(\Leftrightarrow x=22:\left(-4\right)\)

\(\Leftrightarrow x=\frac{-22}{4}=\frac{-11}{2}\)

Vậy tập nghiệm \(S=\left\{\frac{-11}{2}\right\}\)

14 tháng 2 2018

a) Ta có: \(\frac{x+a}{x+2}+\frac{x-2}{x-a}=2\left(1\right)\)

Với a = 4

Thay vào phương trình (t) ta được:

  \(\frac{x+2}{x+2}+\frac{x-2}{x-2}=2\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow x^2-4+x^2-4=2\left(x^2-4\right)\)

\(\Leftrightarrow2x^2=2x^2-8\)

\(\Leftrightarrow0x=-8\)

Vậy phương trình vô nghiệm

b) Nếu x = -1

\(\Rightarrow\frac{-1+a}{-1+2}+\frac{-1-2}{-1-a}=2\)

\(\Leftrightarrow\frac{-1+a}{1}+\frac{-3}{-1-a}=2\)

\(\Leftrightarrow\frac{\left(-1+a\right)\left(-1-a\right)}{-1-a}+\frac{-3}{-1-a}=\frac{2\left(-1-a\right)}{-1-a}\)

\(\Leftrightarrow1+a-a-a^2-3=-2-2a\)

\(\Leftrightarrow-a^2+2a=-2-1+3\)

\(\Leftrightarrow a\left(2-a\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=0\\2-a=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)

Vậy a = {0;2}

NĂM MỚI VUI VẺ

14 tháng 2 2018

\(a,\frac{x+4}{x+2}+\frac{x-2}{x-4}=2\)

\(\frac{x+2+2}{x+2}+\frac{x-4+2}{x-4}=2\)

=> \(1+\frac{2}{x+2}+1+\frac{2}{x-4}=2\)

=>\(2\left(\frac{x-4+x+2}{\left(x+2\right)\left(x-4\right)}\right)=0\)

=> x=1 (t/m \(x\ne-2\) và \(x\ne4\))

29 tháng 1 2020

\(ĐKXĐ:x\ne2;x\ne4\)

\(\frac{x-3}{x-2}-\frac{x-2}{x-4}=3\frac{1}{5}\)

\(\Rightarrow\frac{\left(x-3\right)\left(x-4\right)-\left(x-2\right)^2}{\left(x-2\right)\left(x-4\right)}=\frac{16}{5}\)

\(\Rightarrow\frac{x^2-7x+12-x^2+4x-4}{x^2-6x+8}=\frac{16}{5}\)

\(\Rightarrow\frac{-3x+8}{x^2-6x+8}=\frac{16}{5}\)

\(\Rightarrow-3x+8=\frac{16}{5}\left(x^2-6x+8\right)\)

\(\Rightarrow-3x+8=\frac{16}{5}x^2-\frac{96}{5}x+\frac{128}{5}\)

\(\Rightarrow\frac{16}{5}x^2-\frac{81}{5}x+\frac{88}{5}=0\)

Ta có \(\Delta=\frac{81^2}{5^2}-4.\frac{16}{5}.\frac{88}{5}=\frac{929}{25},\sqrt{\Delta}=\frac{\sqrt{929}}{5}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{81+\sqrt{929}}{32}\\x=\frac{81-\sqrt{929}}{32}\end{cases}}\)

30 tháng 9 2020

giải phương trình mà có 1 vế ??

phan h da thuc thanh nhan tu

25 tháng 12 2018

\(\hept{\begin{cases}2.\frac{1}{x}+5.\frac{1}{x+y}=2\\3.\frac{1}{x}+\frac{1}{x+y}=1,7\end{cases}}\)

Đặt \(\frac{1}{x}\)=a 

\(\frac{1}{x+y}=b\)

ta có \(\hept{\begin{cases}2a+5b=2\\3a+b=1,7\end{cases}}\)

\(\hept{\begin{cases}a=\frac{1}{2}\\b=\frac{1}{5}\end{cases}}\)

=> \(\frac{1}{x}=\frac{1}{2}\Rightarrow x=2\)

\(\frac{1}{x+y}=\frac{1}{5}\)\(\Rightarrow x+y=5\)\(\Rightarrow y=3\)

27 tháng 4 2018

\(\frac{x^2-8}{x^2-16}=\frac{1}{x+4}+\frac{1}{x-4}\)

\(\Rightarrow\frac{x^2-8}{\left(x+4\right)\left(x-4\right)}=\frac{x-4}{\left(x+4\right)\left(x-4\right)}+\frac{x+4}{\left(x-4\right)\left(x+4\right)}\)

\(\Rightarrow x^2-8=x-4+x+4\)

\(\Rightarrow x^2-8=2x\)

\(\Rightarrow x^2-2x-8=0\)

\(\Delta=b^2-4ac=\left(-2\right)^2-4.1.\left(-8\right)=4+32=36>0\)

phương trình có 2 nghiệm phân biệt : \(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2+\sqrt{36}}{2}=\frac{2+6}{2}=\frac{8}{2}=4\)

                                                      \(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2-\sqrt{36}}{2}=\frac{2-6}{2}=\frac{-4}{2}=\left(-2\right)\)