K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2020

Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{7a}{7c}=\frac{b+7a}{d+7c}\)

\(\Rightarrow\frac{a}{b+7a}=\frac{c}{d+7c}\)( đpcm )

15 tháng 10 2018

\(\frac{a}{b}=\frac{c}{d}=>ad=bc=>\frac{a}{c}=\frac{b}{d}=\frac{7a}{4c}=\frac{7b}{4d}\)

áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{7a+4b}{7c+4d}=\frac{7a-4b}{7c-4d}\)

\(=>\left(7a+4b\right).\left(7c-4d\right)=\left(7a+4b\right).\left(7c-4d\right)\)

\(=>\frac{7a-4b}{7c+4d}=\frac{7a+4b}{7c-4d}\left(dpcm\right)\)

15 tháng 10 2018

sai rồi bạn ơi bạn làm lịa đi

21 tháng 7 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Ta có:

\(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7b^2k^2+3\cdot bk\cdot b}{11b^2k^2-8b^2}=\frac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\frac{7k^2+3k}{11k^2-8}\left(1\right)\)

\(\frac{7c^2+3cd}{11c^2-8d^2}=\frac{7d^2k^2+3dk\cdot d}{11d^2k^2-8d^2}=\frac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\frac{7k^2+3k}{11k^2-8}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrowđpcm\)

Mấy bài khác tương tự

21 tháng 11 2016

Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có: \(\frac{a.b}{c.d}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\) (1)

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2}{d^2}\) (2)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\) (3)

Từ (1), (2) và (3) suy ra \(\frac{a.b}{c.d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)

21 tháng 11 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)

ta có: \(\frac{a.b}{c.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\left(1\right)\)

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+2ab+b^2}{c^2+2cd+d^2}=\frac{b^2.k^2+2b^2.k+b^2}{d^2.k^2+2d^2.k+d^2}=\frac{b^2}{d^2}\left(2\right)\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2}{d^2}\left(3\right)\)

từ 1,2 và 3 ta có điều phải chứng minh

8 tháng 10 2017

a, \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\Rightarrow\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{\left(a-c\right)^4}{\left(b-d\right)^4}\) (1)

\(\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{5a^4}{5b^4}=\frac{7c^4}{7d^4}=\frac{5a^4+7c^4}{5b^4+7d^4}\)(2)

Từ (1) và (2) => đpcm

b, \(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\) (3)

\(\frac{a}{b}=\frac{c}{d}=\frac{3c}{3d}=\frac{a-3c}{b-3d}\) (4)

Từ (3) và (4) => đpcm

c, làm giống câu a

8 tháng 10 2017

a) ta có \(\frac{a}{b}=\frac{c}{d}=\frac{a+2c}{b+2d}\left(1\right)\)

            \(\frac{a}{b}=\frac{c}{d}=\frac{a-3c}{b-3d}\left(2\right)\)

(1) và (2) => \(\frac{a+2c}{b+2d}=\frac{a-3c}{b-3d}\)

27 tháng 10 2019

Áp dụng TC của dãy tỉ số bằng nhau , ta có :

\(\frac{2019a+b+c+d}{a}=\frac{a+2019b+c+d}{b}=\frac{a+b+2019c+d}{c}=\frac{a+b+c+2019d}{d}\)

\(=\frac{\left(2019a+a+a+a\right)+\left(2019b+b+b+b\right)+\left(2019c+c+c+c\right)+\left(2019d+d+d+d\right)}{a+b+c+d}\)

\(=\frac{2022\left(a+b+c+d\right)}{a+b+c+d}=2022\)

Xét a + b + c + d =0

=> ( a + b ) = - ( c + d ) ; ( b + c ) = - ( a + d ) ; ( c + d ) = - ( a + b ) ; (a + d ) = - ( b + c )

\(\Rightarrow M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{d+a}+\frac{-\left(a+b\right)}{b+a}+\frac{-\left(a+d\right)}{b+c}\)

     \(M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Xét a + b + c + d khác 0 

=> a = b = c = d 

=> M = 1 + 1 + 1 + 1 = 4

Vậy .....................

29 tháng 8 2016

1. xem lại đề bài nhé bạn.

2. nhân cả tử và mẫu với lần lượt a, b, c

sau đó sẽ nhận thấy chúng bằng nhau 

27 tháng 9 2016

Gọi \(k=\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\)a=kb ; c=kd

\(\Rightarrow\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\) 

Vậy...