Bạn nào chuyên Lý hộ mình câu này với '-'
Một người đi xe đạp trên quãng đường AB. 1/2 quãng đường đầu đi với vận tốc 8km/h, 1/2 quãng đường còn lại đi với vận tốc 12km/h.
Tính vận tốc trung bình của người đó trên cả quãng đường AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi nửa quãng đường là S
\(t_1\) là thời gian đi hết nửa quãng đường đầu
\(t_1=\dfrac{s}{12}\)
\(t_2\) là thời gian đi hết nửa quãng đường sau
\(t_2=\dfrac{S}{v_2}\)
\(v_{tb}=\dfrac{S+S}{t_1+t_2}=\dfrac{2S}{\dfrac{S}{12}+\dfrac{S}{v_2}}=8\)
\(\Leftrightarrow\dfrac{2S}{\dfrac{S\left(12+v_2\right)}{12v_2}}=8\Leftrightarrow\dfrac{24v_2}{12+v_2}=8\Rightarrow v_2=6\) km/h
Gọi s là chiều dài nửa quãng đường mà người đi xe đạp phải đi.
Như vậy, thời gian đi hết nửa quãng đường đầu s1 = s với vận tốc v1 là:
Thời gian đi hết nửa quãng đường còn lại s2 = s với vận tốc v2 là:
Vậy tổng thời gian đi hết cả quãng đường là:
Vận tốc trung bình của người đi xe đạp trên cả quãng đường là:
Giải
Gọi s là chiều dài nửa quãng đường
Thời gian đi hết nửa quãng đường đầu với vận tốc v1 là t1=s/v1 (1)
Thời gian đi hết nửa quãng đường còn lại với vận tốc v2 là t2=s/v2 (2)
Vận tốc trung bình của người đi xe đạp trên quãng đường là vtb = 2s/t1+ t2 (3)
Kết hợp (1); (2); (3) có: 1/v1 + 1/v2 = 2/vtb
Thay số vtb = 8km/h ; v1 = 12km/h
Vận tốc trung bình của người đi xe ở nửa quãng đường sau là v2 = 6km/h.
Gọi s là chiều dài nửa quãng đường
Thời gian đi hết nửa quãng đường đầu với vận tốc v1 là (1)
Thời gian đi hết nửa quãng đường còn lại với vận tốc v2 là (2)
Vận tốc trung bình của người đi xe đạp trên quãng đường là (3)
Kết hợp (1); (2); (3) có:
Thay số vtb = 8km/h; v1 = 12km/h
Vận tốc trung bình của người đi xe ở nửa quãng đường sau là v2 = 6km/h
Gọi s là chiều dài nửa quãng đường
Thời gian đi hết nửa quãng đường đầu với vận tốc v1 là t1=s/v1 (1)
Thời gian đi hết nửa quãng đường còn lại với vận tốc v2 là t2=s/v2 (2)
Vận tốc trung bình của người đi xe đạp trên quãng đường là vtb=2s/t1+t2 (3)
Kết hợp (1); (2); (3) có: 1/v1+1/v2=2/vtb
Thay số vtb = 8km/h; v1 = 12km/h
Vận tốc trung bình của người đi xe ở nửa quãng đường sau là v2 = 6km/h
\(=>t1=\dfrac{\dfrac{1}{3}S}{12}=\dfrac{S}{36}\left(h\right)\)
\(=>t2=\dfrac{\dfrac{1}{3}S}{8}=\dfrac{S}{24}\left(h\right)\)
\(=>t3=\dfrac{\dfrac{1}{3}S}{6}=\dfrac{S}{18}\left(h\right)\)
\(=>vtb=\dfrac{S}{t1+t2+t3}=\dfrac{S}{\dfrac{S}{36}+\dfrac{S}{24}+\dfrac{S}{18}}=\dfrac{S}{\dfrac{432S+648S+864S}{15552}}\)
\(=\dfrac{S}{\dfrac{1944S}{15552}}=\dfrac{15552}{1944}=8km/h\)
Vận tốc người đi xe đạp đi nửa quãng đường còn lại là:
\(v_{tb}=\dfrac{2}{\dfrac{1}{12}+\dfrac{1}{v_2}}=\dfrac{2}{\dfrac{1}{4}}=8\left(\dfrac{km}{h}\right)\)
=> \(\dfrac{1}{4}-\dfrac{1}{12}=\dfrac{1}{6}\) => \(v_2=6\left(\dfrac{km}{h}\right)\)
Đáp số: 6 km/h.
Vtb = (S1 + S2)/(t1 + t2)=2S1/(S1/V1 + S2/V2) = 2/(1/V1 + 1/V2) ( cùng rút gọn cho S1)
<=> 8 = 2/(1/12 + 1/V2) => V2 = 6 (km/h)
Vậy vận tốc trên quãng đường còn lại là 6km/h.
vận tốc trung bình trên cả quãng đường là 8km/h ta có:
(v1+v2):2=8
=>(v1+12):2=8
<=>v1+12=16
<=>v1=4
vậy v1=4(km/h)
Theo đề , ta có
Mỗi lần thay đổi vận tốc đều đi quãng đường như nhau nên sử dụng trung bình cộng để giải nha
Vận tốc trung bình là
( 12 + 8 ) : 2 = 10 km/h
thời gian đi đoanj đường thứ 1 laf:
\(t1=\frac{S1}{V1}=\frac{S1}{8}\)
thời gian đi đoan đường thứ 2 la:
\(t2=\frac{S2}{V2}=\frac{S2}{12}\)
Ta có:
Vtb=\(\frac{S1+S2}{t1+t2}\)=\(\frac{2S}{\frac{S1}{8}+\frac{S2}{12}}=\frac{2}{\frac{1}{8}+\frac{1}{12}}=9,6\)(KM/H)