K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2016

Giả sử các số đó là a1 < a2 <…< a39. Xét 20 số hạng đầu tiên của dãy này sẽ có hai
số tận cùng là 0 và có một số có chữ số ngay trước số tận cùng khác 9. Gọi số này là
N.
Xét các số N + 1, N + 2,…, N + 19 thuộc 39 số đã cho. Khi đó:
S(N + i) = S(N) + i với i = 0, 2,…, 9 và S(N + 19) = S(N) + 10 (kí hiệu S(a) = tổng các
chữ số của a).
Trong 11 số liên tiếp S(N), S(N) + 1,…, S(N) + 9, S(N) + 10 thì có một số chia hết
cho 11 (đpcm)

26 tháng 2 2016

cô mình bảo kết quả đúng nhưng cách làm nó sao sao ấy

9 tháng 4 2019

ban ngu the

22 tháng 5 2019

Lê Quang Thắng với Nguyến Vũ Hoàng Trung sao lại chửi Nhóc Song Ngư vậy hai bạn giỏi thì lám đầy đủ ra xem nào 

hai bạn làm đi để được olm chấp nhận câu trả lời chính xác

25 tháng 12 2016

vi cứ 11 số tự nhiên liên tiêp thì laị co 1 so chia hết cho11

suy ra 39 số tự nhiên liên tiêp là có 1 số chia hét cho 11

8 tháng 1 2018

a ) Gọi 11 số tự nhiên liên tiếp 1 bất kì là a ; a + 1 ; a + 2 ; a + 3 ; a + 4 ; a + 5 ; a + 6 ; a + 7 ; a + 8 ; a + 9 ; a + 10

Ta thấy : ( a + 10 ) - a = 10 .

Mà 10 lại chia hết cho 10

Suy ra trong 11 số tự nhiên liên tiếp luôn có 2 số có hiệu là 10 ( ko phải ít nhất nha bạn ) 

b ) Gọi 100 số tự nhiên liên tiếp bất kì là 50a ; 50a + 1 ; ... ; 50a + 99

Ta thấy ( 50a + 49 ) + ( 50a + 51 ) = 100a + 100

             ( 50a + 48 ) + ( 50a + 52 ) = 100a + 100

             ( 50a + 1 ) + ( 50a + 49 ) = 100a + 50

Mà 50 và 100  thì lại chia hết cho 50

Suy ra trong 100 số tự nhiên liên tiếp luôn có ít nhất 2 số có tổng chia hết cho 50

13 tháng 11 2016

Xét 10 số đầu của dãy 19 số tự nhiên liên tiếp nên sẽ tồn tại 1 số có tận cùng bằng 0 , ta gọi số đó là \(\overline{a0}\) . Ta xét : \(\overline{a0}\) và 9 số tự nhiên tiếp theo :

\(\overline{a0},\overline{a1},\overline{a2},...,\overline{a9}\)

Gọi tổng các chữ số của \(\overline{a0}=k\Rightarrow\) tổng các chữ số của 10 số tự nhiên liên tiếp trên sẽ là : \(k,k+1,k+2,...,k+10\)

Dãy số : \(k,k+1,k+2,...,k+10\) tồn tại một số chia hết cho 10 \(\Rightarrow\) tồn tại một số của dãy : \(\overline{a0},\overline{a1},\overline{a2},...,\overline{a9}\) có tổng các chữ số chia hết cho 10 .

Vậy ...

18 tháng 1 2021

hay

 

7 tháng 7 2015

a ( a + 1 ) 

. A chẵn ---) a (a + 1 ) chia hết cho 2

.  A lẽ -->> A khg chia hết cho 2 --->> A chia 2 dư 1 -------> a-1 chia hết cho 2 ---> a ( a + 1 ) chia hết 2 

2 tháng 12 2023

Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2

TH1: Nếu a chia hết cho 3 => Đề bài đúng

TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)

=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng

TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)

=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng

TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)

2 tháng 12 2023

Bài 5:

Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3

Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2

Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4

Nhưng: 2 không chia hết cho 4

Nên: 4(b+1)+2 không chia hết cho 4

Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4 

Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)