K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021
 Tham khảo!Anser reply image  
30 tháng 10 2021

a: Xét tứ giác AICK có 

AI//CK

AI=CK

Do đó: AICK là hình bình hành

2 tháng 6 2018

A B C D O E F I K P O'

Gọi giao điểm của AC và BD là O; giao điểm của KI và AF là O'. Tia FI cắt AC tại điểm P.

Xét tứ giác AKFI: FI//AK; KF//AI => Tứ giác AKFI là hình bình hành.

Do KI cắt AF tại O' => O' là trung điểm của AF.

Xét \(\Delta\)AFC: O' là trung điểm của AF; E là trung điểm của FC

=> O'E là đường trung bình của \(\Delta\)AFC => O'E//AC và O'E=1/2.AC

Ta thấy tứ giác ABCD là hình bình hành; AC giao BD tại O => OA=OC=1/2.AC

Do đó: O'E=OA. Mà O'E//OA (O'E//AC) nên tứ giác AO'EO là hình bình hành.

=> AO' // OE hay AF//BD => ^KAF=^ADB (Đồng vị)

Xét \(\Delta\)AKF và \(\Delta\)DAB: ^KAF=^ADB; ^AKF=^DAB (Vì KF//AB)

=> \(\Delta\)AKF ~ \(\Delta\)DAB (g.g) => \(\frac{AK}{DA}=\frac{KF}{AB}\).

Lại có KF=AI và AB=DC => \(\frac{AK}{AD}=\frac{AI}{DC}\)=> \(\Delta\)KAI ~ \(\Delta\)ADC (c.g.c)

=> ^AIK=^DCA. Mà ^DCA=^BAC nên ^AIK=^BAC => IK // AC (*)

Lại thấy: FI//AK => IP//AK; KI // AC (cmt) => KI//AP.

Từ đó suy ra: Tứ giác APIK là hình bình hành => IP=AK. Mà FI=AK.

=> FI=IP => I là trung điểm của FP.

Xét \(\Delta\)PFC: I là trung điểm FP; E là trung điểm của FC => IE//PC hay IE//AC (**)

Tư (*) và (**) => I;E;K là 3 điểm thẳng hàng (Tiên đề Ơ-clit) (đpcm).