K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2017

Đáp án cần chọn là: C

Ta có DH = 1 2 (CD – AB) = 1 2 (22 – 12)

Do ABCD là hình thang cân nên AD = BC = 13 cm

Áp dụng định lí Py-ta-go vào tam giác ADH vuông tại H ta có

A D 2 = A H 2 + D H 2 ⇒ A H 2 = A D 2 - D H 2 = 13 2 - 5 2 ⇒ A H = 12

Vậy AH = 12cm.

10 tháng 1 2019

Do AB//CD

=) \(\widehat{A}\)+\(\widehat{D}\)=1800 (2 góc vị trí trong cùng phía )

  1000 + \(\widehat{D}\)=1800

             \(\widehat{D}\)=1800 - 1000

           \(\widehat{D}\)= 800

Xét tứ giác ABCD có :

\(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)+\(\widehat{D}\)=3600

1000+1200+\(\widehat{C}\)+800 =3600

 3000 +\(\widehat{C}\)=3600

         \(\widehat{C}\)= 600

2) Từ B kẻ BE \(\perp\)CD

Xét tam giác ADH (\(\widehat{AH\text{D}}\)=900) và BCE (\(\widehat{BEC}\)=900) có:

           AD=BC (tính chất hình thang cân)

          \(\widehat{A\text{D}H}\)=\(\widehat{BCE}\)(tính chất hình thang cân)

=) Tam giác ADH = Tam giác BCE (cạch huyền - góc nhọn )

=)  DH= CE (2 cạch tương ứng )

Do AB//CD Mà AH\(\perp\)CD=) AH\(\perp\)AB

Xét tứ giác ABEH có

\(\widehat{BAH}\)\(\widehat{AHE}\) = \(\widehat{BEH}\) = 900

=) Tứ giác ABEH lá hình chữ nhật =) AB=HE=10 cm

Ta có : DH+HE+EC= 20 cm

         2DH+10=20

         2DH =10

           DH = 5 (cm)

xét tam giác vuông AHD 

Áp dụng định lí Pitago ta có

AD2=AH2+HD2

AD2=122+52

AD2= 144+25=169

AD=13 cm (đpcm)

      

7 tháng 2 2023

bạn có thể cho mình xem hình thì dễ hiểu hơn

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

 => AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.

Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago)   mà BN=9cm (gt)

=>AN2+AB2=81        Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81     (1)

Tam giác ABC vuông tại A có: AC2+AB2=BC=> BC2 - AB= AC2   (2)

Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC- AB2)+AB2=81       mà BC=12(cmt)

=> 36 - \(\frac{1}{4}\)AB2+AB2=81

=> 36+\(\frac{3}{4}\)AB2=81

=> AB2=60=>AB=\(\sqrt{60}\)

C2

Cho hình thang cân ABCD có đáy lớn CD = 1

C4

Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

7. Cho đường tròn tâm O đường kính AB = 53 cm . C là một điểm trên đường tròn sao cho AC = 45 cm . Gọi H là hình chiếu của C trên AB . Tính BC , AH , BH , CH và OH . 8. Cho hình thang cân ABCD có đáy lớn AB = 15 cm , đáy nhỏ CD = 5 cm và góc A bằng 60 ° . a ) Tính cạnh BC . b ) Gọi M , N lần lượt là trung điểm của AB và CD , Tỉnh MN .9 , Cho tứ giác ABCD có AI ACAD 20 cm , ốc B bằng ( 6 ) " VỀ VỐc A bằng , ly , a ) Tính đường chéo...
Đọc tiếp

7. Cho đường tròn tâm O đường kính AB = 53 cm . C là một điểm trên đường tròn sao cho AC = 45 cm . Gọi H là hình chiếu của C trên AB . Tính BC , AH , BH , CH và OH .

 8. Cho hình thang cân ABCD có đáy lớn AB = 15 cm , đáy nhỏ CD = 5 cm và góc A bằng 60 ° . a ) Tính cạnh BC . b ) Gọi M , N lần lượt là trung điểm của AB và CD , Tỉnh MN .

9 , Cho tứ giác ABCD có AI ACAD 20 cm , ốc B bằng ( 6 ) " VỀ VỐc A bằng , ly , a ) Tính đường chéo BD , b ) Tính khoảng cách B và DK từ hai điểm B và D đến AC . c ) Tính HK , d ) Vẽ BE vuông gốc với DC kéo dài . Tính BE , CE , DC

10. Cho đoạn thẳng AB 2a . Từ trung điểm 0 của AB về Ox vuông vỐC với AB . Trên 9x a lấy điểm D sao cho OD Tu B ve BC 2 vuông góc với AD kéo dài , a ) Tính AD , AC và BC theo a , b ) Kéo dài DO một đoạn OE = a , Chứng minh bốn điểm A , C , B , E cùng nằm trên một đường tròn . c ) Vẽ đường vuông góc với BC tại B cắt CE tại F. Tính BF . d ) Gọi P là giao điểm của AB và CE , Tính AP và BP .

11.Cho tam giác ABC cân tại A có BC 16 cm , AH = 6 cm . Về điểm D trên đoạn BH sao cho BD = 3,5 cm . Chứng minh rằng tam giác DAC vuông .

0
DD
8 tháng 7 2021

Câu 11.12. 

Kẻ đường cao \(AH,BK\).

Do tam giác \(\Delta AHD=\Delta BKC\left(ch-gn\right)\)nên \(DH=BK\).

Đặt \(AB=AH=x\left(cm\right),x>0\).

Suy ra \(DH=\frac{10-x}{2}\left(cm\right)\)

Xét tam giác \(AHD\)vuông tại \(H\):

\(AD^2=AH^2+HD^2=x^2+\left(\frac{10-x}{2}\right)^2\)(định lí Pythagore) 

Xét tam giác \(DAC\)vuông tại \(A\)đường cao \(AH\):

\(AD^2=DH.DC=10.\left(\frac{10-x}{2}\right)\)

Suy ra \(x^2+\left(\frac{10-x}{2}\right)^2=10.\frac{10-x}{2}\)

\(\Leftrightarrow x=2\sqrt{5}\)(vì \(x>0\))

Vậy đường cao của hình thang là \(2\sqrt{5}cm\).

DD
8 tháng 7 2021

Câu 11.11. 

Kẻ \(AE\perp AC,E\in CD\).

Khi đó \(AE//BD,AB//DE\)nên \(ABDE\)là hình bình hành. 

Suy ra \(AE=BD=15\left(cm\right)\).

Kẻ đường cao \(AH\perp CD\)suy ra \(AH=12\left(cm\right)\).

Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AH\)

\(\frac{1}{AH^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AE^2}=\frac{1}{12^2}-\frac{1}{15^2}=\frac{1}{400}\)

\(\Rightarrow AC=20\left(cm\right)\)

\(S_{ABCD}=\frac{1}{2}AC.BD=\frac{1}{2}.15.20=150\left(cm^2\right)\),

24 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

17 tháng 3 2021

undefined

17 tháng 3 2021

Bạn ơi có chỗ nào không hiểu thì bạn hỏi nhé tại có chỗ mình làm tắt nhá!