K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

Đáp án C

+ Gọi H là một điểm bất kì nằm trên BM. Tương tự, để H cực đại thì: d 1 - d 2 = k + 1 2 λ

+ Từ hình vẽ ta thấy khoảng giá trị của hiệu số  d 1 - d 2 : A M - 2 A M ≤ d 1 - d 2 ≤ A B

+ Kết hợp hai phương trình trên ta thu được

A M 1 - 2 λ - 1 2 ≤ k ≤ A B λ - 1 2

→ - 6 , 02 ≤ k ≤ 12 , 8

Vậy sẽ có 19 điểm dao động với biên độ cực đại trên đoạn BM.

10 tháng 10 2019

Đáp án B

+ Gọi H là một điểm bất kì nằm trên BM. Tương tự, để H cực đại thì:

d 1 - d 2 = ( k + 1 2 ) λ

+ Từ hình vẽ ta thấy khoảng giá trị của hiệu số d1 – d2:

AM - 2 AM ≤ d 1 - d 2 ≤ AB

+ Kết hợp hai phương trình trên ta thu được:

AM ( 1 - 2 ) λ - 1 2 ≤ k ≤ A B λ - 1 2

→ - 6 , 02 ≤ k ≤ 12 , 8

Vậy sẽ có 19 điểm dao động với biên độ cực đại trên đoạn BM.

8 tháng 4 2018

Đáp án B

+ Gọi H là một điểm bất kì nằm trên BM. Tương tự, để H cực đại thì:

d 1 - d 2 = k + 1 2 λ

+ Từ hình vẽ ta thấy khoảng giá trị của hiệu số  d 1 - d 2 : A M - 2 A M ≤ d 1 - d 2 ≤ A B

+ Kết hợp hai phương trình trên ta thu được: A M 1 - 2 λ - 1 2 ≤ k ≤ A B λ - 1 2

→ - 6 , 02 ≤ k ≤ 12 , 8

Vậy sẽ có 19 điểm dao động với biên độ cực đại trên đoạn BM

27 tháng 10 2021

<Em ko bt có đề là như thế hay là mình chép lộn không nhưng đây là cách làm tìm "Số điểm dao động với biên độ cực đại trên đoạn BM " Chị tham thảo nha.>

THAM THẢO

undefined

+ Gọi H là một điểm bất kì nằm trên BM. Tương tự, để H cực đại thì

 \(d_1-d_2=\left(k+\dfrac{1}{2}\right)\lambda\)

+ Từ hình vẽ ta thấy khoảng giá trị của hiệu số

\(\dfrac{d_1-d_2}{AM-\sqrt{2}AM}\le d_1-d_2\le AB\)

+ Kết hợp hai phương trình trên ta thu được

\(\dfrac{\left(k+\dfrac{1}{2}\right)\lambda}{AM-\sqrt{2}AM}\le\left(k+\dfrac{1}{2}\right)\lambda\le AB\)

\(\Leftrightarrow\dfrac{AM\left(1-\sqrt{2}\right)}{\lambda}-\dfrac{1}{2}\le k\le\dfrac{AB}{\lambda}-\dfrac{1}{2}\)

\(\Rightarrow-6,02\le k\le12,8\)

Vậy sẽ có 19 điểm dao động với biên độ cực đại trên đoạn BM.

 

31 tháng 12 2018

Đáp án C

+ Gọi H là một điểm bất kì nằm trên BM. Tương tự, để H cực đại thì

d 1 - d 2 = ( k + 1 2 ) λ

+ Từ hình vẽ ta thấy khoảng giá trị của hiệu số

+ Kết hợp hai phương trình trên ta thu được

Vậy sẽ có 19 điểm dao động với biên độ cực đại trên đoạn BM

11 tháng 7 2017

Đáp án C

+ Gọi H là một điểm bất kì nằm trên BM. Tương tự, để H cực đại thì:

d 1 - d 2 = ( k + 1 2 ) λ

Vậy sẽ có 19 điểm dao động với biên độ cực đại trên đoạn BM.

3 tháng 1 2019

Chọn đáp án A

Hai nguồn kết hợp ngược pha d 1 − d 2 = m λ d 1 − d 2 = k − 0 , 5 λ

Cực đại thuộc BM:

d 1 − d 2 = k + 0 , 5 λ = k + 0 , 5 1 , 5 M A − M B ≤ d 1 − d 2 < B A − B B ⇒ − 8 , 3 ≤ k + 0 , 5 1 , 5 < 20

⇒ − 6 , 03 ≤ k < 12 , 8 ⇒ k = − 6 , − 5 , − 4 , ... , 12

Vậy có 19 giá trị của k

24 tháng 2 2017

Đáp án A

Bước sóng λ = v/f = 30/20 = 1,5 cm

+ Số điểm dao động với biên độ cực đại trên đoạn BM là số giá trị nguyên của k thỏa mãn:

 

→ Có 19 điểm

17 tháng 4 2017

20 tháng 6 2018

chọn đáp án B

M,N nằm cùng một phía với đường thẳng AB
ABMN là hình thoi,AB=BN
Điều kiên để một điểm dao động với biên độ cực đại d 1 - d 2 = k λ = 2 k

xét tại A ta có d 1 = 0 ; d 2 = - A B ⇒ k = - 10

Xét tại M  d 1 = 20 3 , d 2 = M B = 20 ⇒ k = 7 , 32

số điểm dao động với biên độ cực đại trên AM ứng với giá trị k thuộc đoạn [-10,7] k nguyên vậy có 18 điểm dao động với biên độ cực đại trên AM