Tìm số tự nhiên x để D = 2 x - 1 x + 3 có giá trị là một số nguyên
A. x = 4
B. x = 16
C. x = 9
D. x = 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)
b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)
Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)
Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)
Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)
Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)
c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)
\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)
\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)
1: \(D=\dfrac{1}{x+4}+\dfrac{x}{x-4}+\dfrac{24-x^2}{x^2-16}\)
\(=\dfrac{1}{x+4}+\dfrac{x}{x-4}+\dfrac{24-x^2}{\left(x+4\right)\left(x-4\right)}\)
\(=\dfrac{x-4+x\left(x+4\right)+24-x^2}{\left(x+4\right)\left(x-4\right)}\)
\(=\dfrac{-x^2+x+20+x^2+4x}{\left(x+4\right)\left(x-4\right)}=\dfrac{5x+20}{\left(x+4\right)\left(x-4\right)}\)
\(=\dfrac{5\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}=\dfrac{5}{x-4}\)
2: Khi x=10 thì \(D=\dfrac{5}{10-4}=\dfrac{5}{6}\)
3: \(M=\left(x-2\right)\cdot D=\dfrac{5\left(x-2\right)}{x-4}\)
Để M là số nguyên thì \(5\cdot\left(x-2\right)⋮x-4\)
=>\(5\left(x-4+2\right)⋮x-4\)
=>\(5\left(x-4\right)+10⋮x-4\)
=>\(10⋮x-4\)
=>\(x-4\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
=>\(x\in\left\{5;3;6;2;9;-1;14;-6\right\}\)
`B17:`
`a)` Với `x \ne +-3` có:
`A=[x+15]/[x^2-9]+2/[x+3]`
`A=[x+15+2(x-3)]/[(x-3)(x+3)]`
`A=[x+15+2x-6]/[(x-3)(x+3)]`
`A=[3x+9]/[(x-3)(x+3)]=3/[x-3]`
`b)A=[-1]/2<=>3/[x-3]=-1/2<=>-x+3=6<=>x=-3` (ko t/m)
`=>` Ko có gtr nào của `x` t/m
`c)A in ZZ<=>3/[x-3] in ZZ`
`=>x-3 in Ư_3`
Mà `Ư_3={+-1;+-3}`
`@x-3=1=>x=4`
`@x-3=-1=>x=2`
`@x-3=3=>x=6`
`@x-3=-3=>x=0`
________________________________
`B18:`
`a)M=1/3` `ĐK: x \ne +-4`
`<=>(4/[x-4]-4/[x+4]).[x^2+8x+16]/32=1/3`
`<=>[4(x+4)-4(x-4)]/[(x-4)(x+4)].[(x+4)^2]/32=1/3`
`<=>32/[x-4].[x+4]/32=1/3`
`<=>3x+12=x-4`
`<=>x=-8` (t/m)
\(\text{Ta có : }D=\frac{\sqrt{x}-3}{\sqrt{x}+2}\)
\(\Leftrightarrow D=\frac{\sqrt{x}+2-5}{\sqrt{x}+2}\)
\(\Leftrightarrow D=\frac{\sqrt{x}+2}{\sqrt{x}+2}-\frac{5}{\sqrt{x}+2}\)
\(\Leftrightarrow D=1-\frac{5}{\sqrt{x}+2}\)
\(\text{Để D nguyên thì }5⋮\left(\sqrt{x}+2\right)\)
\(\Leftrightarrow\sqrt{x}+2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Sau đó bạn thử từng trường hợp là ra