K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

Đáp án B

lim x → − ∞ y = lim x → − ∞ 9 x 2 + a x + 27 x 3 + b x 2 + 5 3 = lim x → − ∞ 9 x 2 + a x + 3 x + 27 x 3 + b x 2 + 5 3 − 3 x = lim x → − ∞ 9 x 2 + a x − 9 x 2 9 x 2 + a x − 3 x + 27 x 3 + b x 2 + 5 − 27 x 3 27 x 3 + b x 2 + 5 2 3 + 3 x 27 x 3 + b x 2 + 5 3 + 9 x 2 = lim x → − ∞ a x 9 x 2 + a x − 3 x + b x 2 + 5 27 x 3 + b x 2 + 5 2 3 + 3 x 27 x 3 + b x 2 + 5 3 + 9 x 2 = lim x → − ∞ a − 9 + a x − 3 + b + 5 x 2 27 + b x + 5 x 3 2 3 + 3 27 + b x + 5 x 3 3 + 9 = a − 3 − 3 + b 9 + 3.3 + 9 = a − 6 + b 27 = 7 27 ⇒ − 9 2 . a 27 + b 27 = 7 ⇒ − 9 a + 2 b = 14

13 tháng 1 2017

Đáp án B

lim x → − ∞ y = lim x → − ∞ 9 x 2 + a x + 27 x 3 + b x 2 + 5 3

= lim x → − ∞ 9 x 2 + a x + 3 x + 27 x 3 + b x 2 + 5 3 − 3 x

= lim x → − ∞ (   9 x 2 + a x − 9 x 2 9 x 2 + a x − 3 x + 27 x 3 + b x 2 + 5 − 27 x 3 27 x 3 + b x 2 + 5 2 3 + 3 x 27 x 3 + b x 2 + 5 3 + 9 x 2   )

= lim x → − ∞ a x 9 x 2 + a x − 3 x + b x 2 + 5 27 x 3 + b x 2 + 5 2 3 + 3 x 27 x 3 + b x 2 + 5 3 + 9 x 2

= lim x → − ∞ a − 9 + a x − 3 + b + 5 x 2 27 + b x + 5 x 3 2 3 + 3 27 + b x + 5 x 3 3 + 9

= a − 3 − 3 + b 9 + 3.3 + 9 = a − 6 + b 27 = 7 27 ⇒ − 9 2 . a 27 + b 27 = 7 ⇒ − 9 a + 2 b = 14

 

7 tháng 1 2019

7 tháng 1 2019

Đáp án D

18 tháng 10 2019

T=3

Đáp án D

28 tháng 6 2018

Chọn đáp án B.

4 tháng 6 2017

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m+3\right)x-5}{x+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m+3\right)x-5}{x+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)

=>Đường thẳng y=2m+3 là đường tiệm  cận ngang duy nhất của đồ thị hàm số \(y=\dfrac{\left(2m+3\right)x-5}{x+1}\)

Để đường thẳng y=2m+3 đi qua A(-1;3) thì 2m+3=3

=>2m=0

=>m=0

b: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)

=>Đường thẳng \(y=m^2-3m\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)

=>\(m^2-3m=-2\)

=>\(m^2-3m+2=0\)

=>(m-1)(m-2)=0

=>m=1 hoặc m=2

13 tháng 7

Đúng 

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m-5\right)x-1}{2x+1}=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m-5\right)-\dfrac{1}{x}}{2+\dfrac{1}{x}}=\dfrac{m-5}{2}\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(m-5\right)x-1}{2x+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{m-5-\dfrac{1}{x}}{2+\dfrac{1}{x}}=\dfrac{m-5}{2}\)

=>Đường thẳng \(y=\dfrac{m-5}{2}\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(m-5\right)x-1}{2x+1}\)

Để đường tiệm cận ngang \(y=\dfrac{m-5}{2}\) đi qua M(-2;1) thì \(\dfrac{m-5}{2}=1\)

=>m-5=2

=>m=7

b: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m-1\right)+\dfrac{1}{x}-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=2m-1\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m-1\right)+\dfrac{1}{x}-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=2m-1\)

=>\(y=2m-1\) là đường tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)

=>2m-1=1

=>2m=2

=>m=1

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{mx-1}{2x+m}=\lim\limits_{x\rightarrow+\infty}\dfrac{m-\dfrac{1}{x}}{2+\dfrac{m}{x}}=\dfrac{m}{2}\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{mx-1}{2x+m}=\lim\limits_{x\rightarrow-\infty}\dfrac{m-\dfrac{1}{x}}{2+\dfrac{m}{x}}=\dfrac{m}{2}\)

Vậy: x=m/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{mx-1}{2x+m}\)

Để x=m/2 đi qua \(A\left(-1;\sqrt{2}\right)\) thì \(\dfrac{m}{2}=-1\)

=>\(m=-1\cdot2=-2\)

b: \(\lim\limits_{x\rightarrow-\infty}\dfrac{x-2}{2x-m}=\lim\limits_{x\rightarrow-\infty}\dfrac{1-\dfrac{2}{x}}{2-\dfrac{m}{x}}=\dfrac{1}{2}\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{x-2}{2x-m}=\lim\limits_{x\rightarrow+\infty}\dfrac{1-\dfrac{2}{x}}{2-\dfrac{m}{x}}=\dfrac{1}{2}\)

=>x=1/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{x-2}{2x-m}\)

=>Không có giá trị nào của m để đường thẳng x=1 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x-2}{2x-m}\)