tìm x,y,z biết
x+16/9=y-25/16=z+9/25 và 2x^3-1=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x3−1=15⇒2x3=16⇒x3=8⇒x=22x3-1=15⇒2x3=16⇒x3=8⇒x=2
Có: x+169=y−2516x+169=y-2516
⇒2+169=y−2516⇒y=57⇒2+169=y-2516⇒y=57
Có: x+169=z+925x+169=z+925
⇒2+169=z+925⇒z=41⇒2+169=z+925⇒z=41
Ta có:B=x+y+z=2+57+41=100
Ta có: \(2x^3-1=15\Leftrightarrow x^3=8\Rightarrow x=2\)
\(\Rightarrow\dfrac{18}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\Rightarrow\left\{{}\begin{matrix}\dfrac{y-25}{16}=2\Rightarrow y=57\\\dfrac{z+9}{25}=2\Rightarrow z=41\end{matrix}\right.\)
Vậy \(B=x+y+z=2+57+41=100\)
2x^3-1=15 => 2x^3 = 15+1 = 16 => x^3=16:2=8 = 2^3 => x=2
Khi đó : y-25/16=z+9/25=x+16/9 = 2+16/9 = 2 => y = 57 ; z = 41 => x+y+z = 2+57+41 = 100
Lời giải:
$2x^3-1=1$
$\Leftrightarrow x^3=1\Leftrightarrow x=1$
Do đó:
$\frac{y-25}{16}=\frac{z+9}{25}=\frac{x+16}{9}=\frac{17}{9}$
\(\Rightarrow \left\{\begin{matrix} y=16.\frac{17}{9}+25=\frac{497}{9}\\ z=25.\frac{17}{9}-9=\frac{344}{9}\end{matrix}\right.\)