Hai phân số tối giản có hiệu bằng 3/196 các tử của chúng tỉ lệ vc 3 và 5, các mẫu của chúng tỉ lệ vs 4 và 7. Xác định 2 phân số đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tử của 2 phân số tối giản lần lượt là a;b
mẫu của 2 phân số tối giản lần lượt x;y
Ta có tử của chúng tỉ lệ vs 3 và 5
Suy ra a/3 = b/5=p suy ra a=3p; b=5p
mẫu của chúng tỉ lệ vs 4 và 7
Suy ra x/4=y/7=q suy ra x=4q;y=7q
Lại có a/x-b/y= 3/196
Hay 3p/4q - 5p/7q = 3/196
Suy ra p/q ( 3/4-5/7)= 3/196
Suy ra p/q= 3/7
Do đó : a/x = 9/28
b/y=15/49
Vậy 2 phân số tối giản cần tìm là 9/28 và 15/49
Các tử số tỉ lệ với 3 và 5 suy ra (tử số 1:3)=(tử số 2 :5)
Các mẫu số tỉ lệ với 4 và 7 suy ra (mẫu số 1 :4)= (mẫu số 2 :7)
Với 1 phân số : chia tử bao nhiêu thì phân số đó giảm bấy nhiêu lần , chia mẫu cho bao nhiêu thì phân số đó tăng bấy nhiêu lần
Suy ra : Phân số 1 :3x5= Phân số 2 :4x7
Suy ra phân số 1 = phân số 2 :4x7:5x3
suy ra phân số 1 = phân số 2 x 21 :20
vì 21/20 >1 nên suy ra phân số 1 lớn hơn phân số 2
suy ra 3/196=ps1-ps2=ps2x21/20-ps2=psx(21/20-1)...
suy ra ps 2=3/196x20=60/196=15/49
ps1=ps2x21:20=15/49x21:20=9/28
Đ/S:ps1=9/28 . ps2=15/49
Gọi 2 phân số cần tìm là a/b và c/d.
- Giả sử a/b > c/d
Theo đề bài, ta có:
{a : c = 3 : 5 {b : d = 4 : 7
<=> Tỉ số của 2 phân số là:
a/b : c/d = 3/4 : 5/7
<=> a/b . d/c = 3/4 . 7/5
<=> ad / bc = 21/20
<=> ad = 21/20 . bc = (21bc)/20
Ta lại có: a/b - c/d = (ad - bc)/bd = 3/196
<=> [(21bc) / 20 - bc] / bd = 3/196
<=> [(21bc) / 20] / bd - bc / bd = 3/196
<=> (21bc) / 20 . 1 / bd - bc / bd = 3/196
<=> 21c / 20d - c / d = 3/196
<=> 21c / 20d - 20c / 20d = 3/196
<=> c / 20d = 3/196 => c : 3 và 20d : 196
=> c : 3 và d : 196/20 => c : 3 và d : 49/5
<=> c/d = 3 : 49/5 = 3 . 5 : 49 = 15/49
=> c = 15 ; d = 49
=> a : c = 3 : 5
=> a : 15 = 3 : 5
=> a = 9 và b : d = 4 : 7
=> b : 49 = 4 : 7
=> b = 28
=> a/b = 9/28 và c/d = 15/49
Thử lại, a/b - c/d = 9/28 - 15/49 = 3/196 (đúng theo yêu cầu đề bài)
- Do đó, 2 phân số cần tìm là 9/28 và 3/196
- Giả sử a/b > c/d
Theo đề bài, ta có:
{a : c = 3 : 5
{b : d = 4 : 7
<=> Tỉ số của 2 phân số là: a/b : c/d = 3/4 : 5/7
<=> a/b . d/c = 3/4 . 7/5
<=> ad / bc = 21/20
<=> ad = 21/20 . bc = (21bc)/20
Ta lại có:
a/b - c/d = (ad - bc)/bd = 3/196
<=> [(21bc) / 20 - bc] / bd = 3/196
<=> [(21bc) / 20] / bd - bc / bd = 3/196
<=> (21bc) / 20 . 1 / bd - bc / bd = 3/196
<=> 21c / 20d - c / d = 3/196
<=> 21c / 20d - 20c / 20d = 3/196
<=> c / 20d = 3/196
=> c : 3 và 20d : 196 => c : 3 và d : 196/20 => c : 3 và d : 49/5
<=> c/d = 3 : 49/5 = 3 . 5 : 49 = 15/49
=> c = 15 ; d = 49
=> a : c = 3 : 5 => a : 15 = 3 : 5 => a = 9
và b : d = 4 : 7 => b : 49 = 4 : 7 => b = 28
=> a/b = 9/28 và c/d = 15/49
Thử lại, a/b - c/d = 9/28 - 15/49 = 3/196 (đúng theo yêu cầu đề bài)
- Do đó, 2 phân số cần tìm là 9/28 và 3/196
gọi 2 phân số tối giản là a và b
vì các tử tỉ lệ với 3 và 5 ; các mẫu tỉ lệ với 4 và 7
\(\Rightarrow\)a : b = \(\frac{3}{4}:\frac{5}{7}=21:20\)
\(\Rightarrow\frac{a}{21}=\frac{b}{20}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{21}=\frac{b}{20}=\frac{a-b}{21-20}=\frac{3}{196}\)
\(\Rightarrow a=\frac{3}{196}.21=\frac{9}{28};b=\frac{3}{196}.20=\frac{15}{49}\)