Cho S=1+3+3^2+3^3+..........+3^99+3^100
chung minh rang:S khong chia het cho 5
trinh bay ra nhe
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(S=2+2^2+2^3+...+2^{99}+2^{100}\)
\(\Rightarrow S=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{94}+2^{95}+2^{96}+2^{97}+2^{99}\right)\)
\(\Rightarrow S=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)+...+2^{94}.\left(1+2+2^2+2^3+2^4\right)\)
\(\Rightarrow2.31+2^6.31+...+2^{94}.31\)
\(\Rightarrow S=31.\left(2+2^6+....+2^{94}\right)\) CHIA HẾT CHO 31 (đpcm)
Vậy S chia hết cho 31
Số nhỏ nhất chia hết cho2,3,4 là số 12.
Các số dư đều là số dư lớn nhất mà số dư lớn nhất bé hơn số chia 1 đơn vị.Vậy số cần tìm là:
12-1=11
Gọi a là số cần tìm.
a chia 6 dư 5 nên a + 1 chia hết cho 6
a chia 5 dư 4 nên a + 1 chia hết cho 5
a chia 4 dư 3 nên a + 1 chia hết cho 4
a chia 3 dư 2 nên a + 1 chia hết cho 3
a chia 2 dư 1 nên a + 1 chia hết cho 2
Vậy a + 1 là một số chia hết cho 6; 5; 4; 3; 2, mà số nhỏ nhất chia hết cho 6; 5; 4; 3; 2 là 60 nên:
a + 1 = 60
a = 60 - 1
a = 59
Số cần tìm là 59
\(A=1-2+3-4+5-6+...+99-100\)
\(\Rightarrow A=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(99-100\right)\) ( có 50 cặp )
\(\Rightarrow A=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)
\(\Rightarrow A=\left(-1\right).50\)
\(\Rightarrow A=-50\)
=> A chia hết cho 2 .( Vì A có chữ số tận cùng chia hết cho 2 )
=> A không chia hết cho 3 ( Vì tổng các chữ số không chia hết cho 3 )
=> A không chia hết cho 4