Số các cặp số (x\y) thỏa mãn (x+3)(y+2)=20 là
ai biết thì giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
3y2=12-\(|x-2|\)suy ra 3y2 + /x-2/ =12
Vì /x-2/ \(\ge0;\forall x\); y2\(\ge0;\forall y\)
mà x, y nguyên
TH1: y2=4 và /x-2/ = 0
suy ra y thuộc {2; -2} và x=2
TH2:
y2=1 và /x-2/ = 9
suy ra y thuộc {1; -1} và x thuộc {11; -7}
TH3:
y2=0 và /x-2/ = 12
suy ra y =0 và x thuộc {14; -10}
Tự kết luận nhé
Giải :
(x+3)(y+2) = 20
=> x + 3 ; y + 2 \(\in\) Ư(20)
Ư(20) = {1; 2; 4; 5; 10; 20}
# x + 3 = 1 ; y + 2 = 20
=> x = 1 - 3 = -2 ; y = 20 - 2 = 18
# x + 3 = 2 ; y + 2 = 10
=> x = 2 - 3 = -1 ; y = 10 - 2 = 8
# x + 3 = 4 ; y + 2 = 5
=> x = 4 - 3 = 1 ; y = 5 - 2 = 3
# x + 3 = 5 ; y + 2 = 4
=> x = 5 - 3 = 2 ; y = 4 - 2 = 2
# x + 3 = 10 ; y + 2 = 2
=> x = 10 - 3 = 7 ; y = 2 - 2 = 0
# x + 3 = 20 ; y + 2 = 1
=> x = 20 - 3 = 17 ; y = 1 - 2 = -1
Vậy x = CSLL(các số lần lượt) -2; -1; 1; 2; 7; 17 thì y = CSLL 18; 8; 3; 2; 0; -1
Đáp số : x = CSLL -2; -1; 1; 2; 7; 17 thì y = CSLL 18; 8; 3; 2; 0; -1.
số các cặp số (x,y) thỏa mãn (x-y)*(x+y)=2014 là 2
ai tích mk mk sẽ tích lại
Ta có: (x+3)(y+2)=20
=> x+3 và y+2 là các ước của 20
Mà: Ư(20)={1;2,4;5;10;20}
Ta có bảng sau:
Vậy các cặp (x,y) cần tìm là:(-2;18);(-1;8);(1;3);(2;2);(7;0);(17;1)