Có thể lập đc bao nhiêu số có 3 chữ số khác nhau từ 4 chữ số sau: 1, 0, 5, 6.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Gọi chữ số cần lập là \(\overline{abcd}\)
TH1: \(d=0\Rightarrow\) bộ abc có \(A_9^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 4 cách chọn (từ 2,4,6,8)
a có 8 cách chọn (khác 0 và d), b có 8 cách chọn (khác a và d), c có 7 cách chọn (khác a,b,d)
\(\Rightarrow4.8.8.7\) số
Tổng cộng: \(A_9^3+4.8.8.7=...\)
b. Chọn 4 chữ số còn lại: có \(C_7^4\) cách
Hoán vị 3 chữ số 0,1,2: có \(3!\) cách
Coi bộ 3 chữ số này là 1 số, hoán vị với 4 chữ số còn lại: \(5!\) cách
Ta đi tính số trường hợp 0 đứng đầu:
Số 0 đứng đầu trong bộ 0,1,2: có \(2!\) cách
Đặt bộ 0,1,2 đứng đầu, xếp vị trí cho 4 chữ số còn lại: \(4!\) cách
Vậy có: \(C_7^4.\left(3!.5!-2!.4!\right)=...\) số
a) Số có ba chữ số khác nhau có thể lập được là: 6.5.4 = 120 (số)
b) Số chia hết cho 3 nên tổng 3 chữ số chia hết cho 3, có các cặp số là: (1,2,3), (1,2,6), (2,3,4), (3,4,5), (4,5,6), (1,5,6), (1,3,5), (2,4,6).
Số có ba chữ số khác nhau và chia hết cho 3 có thể lập được là:
8. 3! = 48 (số)
Cho \(X=\left\{0;1;2;4;5;6;8;9\right\}\)
Gọi số cần tìm là \(\overline{abcd}\)
Chọn \(d=1,d=5\) hay \(d=9\)\(\Rightarrow\) có 1 cách
Chọn \(a\) có \(6\) cách \(\left(a\ne0,a\ne d\right)\)
Chọn \(b\) có \(5\) cách \(\left(b\ne a,b\ne d\right)\)
Chọn \(c\) có \(4\) cách \(\left(c\ne a,c\ne b,c\ne d\right)\)
Theo Quy tắc nhân, ta có : \(1.6.5.4=120\) cách chọn 4 chữ số khác nhau và là số lẻ.
Đáp án B
Số đó nhất thiết phải có mặt 3 chữ số 1, 2, 5 ta chỉ cần chọn 2 chữ số nữa từ 4 chữ số còn lại.
TH1: Hai chữ số được chọn kia không chứa số 0: Ta có
TH2: Hai chữ số kia chứa chữ số 0, ta loại trường hợp chữ số 0 đứng đầu thì còn:
Vậy có tất cả là 648 số
Gọi số cần lập
Bước 1: Xếp chữ số 0 vào 1 trong 5 vị trí từ a2 đến a6, có 5 cách xếp.
Bước 2: Xếp chữ số 1 vào 1 trong 5 vị trí còn lại (bỏ 1 vị trí chữ số 0 đã chọn), có 5 cách xếp.
Bước 3: Chọn 4 chữ số trong 8 chữ số {2, 3, 4, 5, 6 , 7, 8, 9}để xếp vào 4 vị trí còn lại, có cách.
Theo quy tắc nhân có số thỏa yêu cầu.
Chọn D.
Từ 4 chữ số : 0; 1; 5; 2 có thể lập đc bao nhiêu số khác nhau có 3 chữ số mà chia hết cho cả 5 và 3
A, 7 B, 6 C, 5 D, 4
TH1: số 2 đứng đầu:
Chọn 2 chữ số từ 6 chữ số còn lại và hoán vị: \(A_6^2=30\) cách
TH2: số 2 không đứng đầu:
Chọn số hàng trăm: có 5 cách (khác 0 và 2)
Chọn 1 chữ số còn lại: 5 cách, hoán vị nó với 2: có \(2!=2\) cách
\(\Rightarrow5.5.2=50\) cách
Tổng cộng: \(30+50=80\) số
Lập được các số là :
105 ; 106 ; 156 ; 165 ; 150 ; 160 ; 501 ; 506 ; 510 ; 560 ; 516 ; 561 ; 601 ; 605 ; 615 ; 651 ; 610 ; 650.
Lập được các số đó bạn ạ !
cảm ơn bạn nhiều nha