Tìm một số có 5 chữ số sao cho khi nhân số đó với 9 thì ta được một số mới được viết bằng chính các chữ số của số phải tìm nhưng theo thứ tự ngược lại.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số đó là abcde
có: abcde.4=edcba
--> (10 000a+1000b+100c+10d+e).4=10 000e+1 000d+100c+10b+a
-->40 000a+ 4 000b+ 400c + 40d+4e=10 000e+1 000d+100c+10b+a
-->(40 000a-a)+(4 000b-10b)+(400c-100c)= (10 000e-4e)+(1 000d -40d)
-->39 999a+ 3990 b+300c=9996 e+960 d
mk mới nghĩ đc đến đó thui
___________________________
Gọi số cần tìm là \(\overline{abcd}\)
\(\overline{abcd}.9=\overline{dcba}\)
Ta có : \(\overline{abcd}\) và \(\overline{dcba}\) là số có 4 chữ số nên :
\(a.10^3.9\) \(=d.10^3\Rightarrow a=1;d=9\)
Xét \(\overline{abcd}\) vì a = 1 \(\Rightarrow b.9< \) số có 2 chữ số
\(\Rightarrow b=1\) hoặc \(b=0\)
với b=1 thì \(\overline{11c9}.9=\overline{9c11}\)
vì \(b=1\Rightarrow\overline{11c9.}9\) có \(c.9\) là số bé hơn 2 chữ số
\(\Rightarrow c=1\) hoặc c = 0
Vô lý vs b = 0 thì \(\overline{10c9}.9=\overline{9c01}\)
\(\Rightarrow c=8\)
1089 . 9 =...