K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

18 tháng 9 2017

Ta có: SH’ = 2 3 SH = 2 3 .6 = 4 (cm)

17 tháng 6 2019

26 tháng 10 2018

27 tháng 6 2017

Đáp án A

29 tháng 3 2017

Đáp án A

Vì tam giác đều nên 

8 tháng 8 2017

Đáp án C

A E ⊥ B C S E ⊥ B C ⇒ S B C ; A B C = S E ; A E = ∠ S E A = 60 0 H E = 1 3 . a 3 2 = a 3 6 S H = H E . tan S E A = a 3 6 . 3 = a 2

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Qua \(M\) dựng đường thẳng song song với \(AB\), cắt \(SB\) tại \(N\).

Qua \(N\) dựng đường thẳng song song với \(BC\), cắt \(SC\) tại \(P\).

Qua \(M\) dựng đường thẳng song song với \(AD\), cắt \(SD\) tại \(Q\).

Ta có:

\(\left. \begin{array}{l}MN\parallel AB\\AB \subset \left( {ABCD} \right)\end{array} \right\} \Rightarrow MN\parallel \left( {ABCD} \right)\)

\(\left. \begin{array}{l}MQ\parallel AD\\AD \subset \left( {ABCD} \right)\end{array} \right\} \Rightarrow MQ\parallel \left( {ABCD} \right)\)

\(\left. \begin{array}{l}MN\parallel \left( {ABCD} \right)\\MQ\parallel \left( {ABCD} \right)\\MN,MQ \subset \left( \alpha  \right)\end{array} \right\} \Rightarrow \left( {MNPQ} \right)\parallel \left( {ABCD} \right)\)

\( \Rightarrow \frac{{{S_{MNPQ}}}}{{{S_{ABC{\rm{D}}}}}} = {\left( {\frac{{MN}}{{AB}}} \right)^2}\)

Ta có: \({S_{ABC{\rm{D}}}} = A{B^2} = {10^2} = 100\)

\(MN\parallel AB \Rightarrow \frac{{MN}}{{AB}} = \frac{{SM}}{{SA}} = \frac{2}{3}\)

\( \Rightarrow \frac{{{S_{MNPQ}}}}{{{S_{ABC{\rm{D}}}}}} = {\left( {\frac{2}{3}} \right)^2} = \frac{4}{9} \Rightarrow {S_{MNPQ}} = \frac{4}{9}{S_{ABC{\rm{D}}}} = \frac{4}{9}.100 = \frac{{400}}{9}\)

Chọn A.

10 tháng 6 2017

Đáp án A

Qua M dựng đường thắng song song AB cắt SB tại N.

Qua M dựng đường thắng song song AD cắt SD tại Q.

Qua N dựng đường thắng song song BC cắt SC tại P.

Ta có M N // A B ⇒ M N // A B C D N P // B C ⇒ N P // A B C D .

⇒ M N P Q / / A B C D .

Tương tự câu 1 ta có tỉ lệ diện tích S M N P Q S A B C D = M N A B 2 = S M S A 2 = 4 9 .

Ta có  S A B C D = 10.10 = 100   ⇔ S M N P Q = 100. 4 9 = 400 9

3 tháng 3 2019

a) Gọi O là tâm của đáy ABCD, M là giao điểm của SO và mặt phẳng (P). Ta có: OM = 2(cm).

Ta tính được O B   =   2 2 c m rồi suy ra SO = 5 (cm)

Từ đó chiều cao cần tìm là: SM = SO - OM 3 (cm)

b) Gọi I là trung điểm của BC. E, F, J lần lượt là giao điểm của SB, SC, SI với mặt phẳng (p).