K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2015

ai trả lời mà tick mình mình sẽ tick lại

14 tháng 10 2021

\(=27x^3-9x+27x^3+8=8-9x\)

31 tháng 10 2021
(3x-2)(2x-4)=1-12x²
22 tháng 4 2020

Bài làm

a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\)

\(\Leftrightarrow\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Leftrightarrow\frac{(3x+2)\left(3x+2\right)}{(3x-2)\left(3x+2\right)}-\frac{6\left(3x-2\right)}{(3x+2)\left(3x-2\right)}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Rightarrow\left(3x+2\right)^2-\left(18x-12\right)=9x^2\)

\(\Leftrightarrow9x^2+12x+4-18x+12x-9x^2=0\)

\(\Leftrightarrow6x+4=0\)

\(\Leftrightarrow x=-\frac{4}{6}\)

\(\Leftrightarrow x=-\frac{2}{3}\)

Vậy x = -2/3 là nghiệm.

23 tháng 4 2020

@Tao Ngu :))@ 9x-4 không tách thành (3x+4)(3x-4) được đâu bạn. Chỗ đó phải là: 9x2-4

Bài thiếu đkxđ của x \(\hept{\begin{cases}3x-2\ne0\\2+3x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne2\\3x\ne-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne\frac{-2}{3}\end{cases}\Leftrightarrow}x\ne\pm\frac{2}{3}}\)

NV
20 tháng 12 2022

ĐKXĐ: \(x\ne\left\{-\dfrac{1}{3};\dfrac{1}{3};0;-\dfrac{4}{3}\right\}\)

\(M=\left(\dfrac{3x\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{2x\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}\right):\dfrac{2x\left(3x+5\right)}{\left(1-3x\right)^2}\)

\(=\left(\dfrac{x\left(3x+5\right)}{\left(1-3x\right)\left(1+3x\right)}\right).\dfrac{\left(1-3x\right)^2}{2x\left(3x+5\right)}\)

\(=\dfrac{1-3x}{2\left(1+3x\right)}\)

24 tháng 12 2022

loading...  

a: \(=\left(x^2+4\right)\left(x^2-4\right)-\left(x^4-9\right)\)

\(=x^4-16-x^4+9=-7\)

b: \(=27x^3-8-27x^3+6=-2\)

c: \(=\left(3x+5+2-3x\right)^2=7^2=49\)

24 tháng 4 2023

Giúp mình với 

NV
22 tháng 7 2021

a.

ĐKXĐ: \(x\ge-\dfrac{5}{3}\)

\(9x^2-3x-\left(3x+5\right)-\sqrt{3x+5}=0\)

Đặt \(\sqrt{3x+5}=t\ge0\)

\(\Rightarrow9x^2-3x-t^2-t=0\)

\(\Delta=9+36\left(t^2+t\right)=\left(6t+3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+6t+3}{18}=\dfrac{t+1}{3}\\x=\dfrac{3-6t-3}{18}=-\dfrac{t}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=3x-1\\t=-3x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+5}=3x-1\left(x\ge\dfrac{1}{3}\right)\\\sqrt{3x+5}=-3x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+5=9x^2-6x+1\left(x\ge\dfrac{1}{3}\right)\\3x+5=9x^2\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
22 tháng 7 2021

c.

ĐKXĐ: \(x\ge-5\)

\(x^2-3x+2-x-5-\sqrt{x+5}=0\)

Đặt \(\sqrt{x+5}=t\ge0\)

\(\Rightarrow-t^2-t+x^2-3x+2=0\)

\(\Delta=1+4\left(x^2-3x+2\right)=\left(2x-3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{1+2x-3}{-2}=1-x\\t=\dfrac{1-2x+3}{-2}=x-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1-x\left(x\le1\right)\\\sqrt{x+5}=x-2\left(x\ge2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2-2x+1\left(x\le1\right)\\x+5=x^2-4x+4\left(x\ge2\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Lời giải:
c. 

$(x-3)(x^2+3x+9)-x^3=x^3-3^3-x^3=-27$ không phụ thuộc vào giá trị của biến

Ta có đpcm

d. 

$(3x+2)(9x^2-6x+4)-9x(3x^2+1)+9x$

$=(3x)^3+2^3-27x^3-9x+9x$

$=27x^3+8-27x^3=8$ không phụ thuộc vào giá trị của biến 

Ta có đpcm

c) Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)-x^3\)

\(=x^3-27-x^3\)

=-27

d) Ta có: \(\left(3x+2\right)\left(9x^2-6x+4\right)-9x\left(3x^2+1\right)+9x\)

\(=27x^3+8-27x^3-9x+9x\)

=8

5 tháng 10 2021

a) Sửa đề: \(A=\left(3x-2\right)\left(9x^2+6x+4\right)-3x\left(9x^2-2\right)\)

\(=27x^3-8-27x^3+6=-2\)

b: Ta có: \(B=\left(3x+5\right)^2+\left(6x+10\right)\left(2-3x\right)+\left(2-3x\right)^2\)

\(=\left(3x+5+2-3x\right)^2\)

=49