Chứng minh rằng với mọi n ∈ N thì 50n+25 không chia hết cho 30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 60n chia hết cho 15 và 45 chia hết cho 15 => 60n + 45 chia hết cho 15
lại có: 60n chia hết cho 30 và 45 không chia hết cho 30 => 60n +45 không chia hêt cho 30
Ta có: 60n chia hết cho 15 (vì 60 chia hết cho 15)
45 chia hết cho 15
\(\Rightarrow\) 60n + 45 chia hết cho 15
Ta có: 60n chia hết cho 30 ( vì 60 chia hết cho 30)
45 không chia hết cho 30
\(\Rightarrow\) 60n + 45 không chia hết cho 30
Vậy với mọi n \(\in\) N thì 60n+45 chia hết cho 15 nhưng không chia hết cho 30
CÓ GÌ SAI SÓT MONG BẠN LƯỢNG THỨ
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh
Ta có: n2 + n+ 6 = n(n+1) + 6
Ta có n(n+1) là tích của 2 số tự nhiên liên tiếp
Nên n(n+1) không có chữ số tận cùng là 9 và 4
Nên n(n+1) + 6 không có tận cùng là 0 hoặc 5 (không chia hết cho 5)
Vậy n2 + n + 6 không chia hết cho 25
a) Gợi ý: phân tích 50 n + 2 - 50 n + 1 = 245.10. 50 n .
b) Gợi ý: phân tích n 3 - n = n(n - 1)(n +1).
60n+45=30(2n+1)+15
Ta có 30(2n+1) chia hết cho 30; 15 không chia hết cho 30
=> 60n+45 không chia hết cho 30