K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 9

Lời giải:
a+1\vdots b$

$\Rightarrow 2b+5+1\vdots b$

$\Rightarrow 2b+6\vdots b$

$\Rightarrow 6\vdots b\Rightarrow b\in \left\{1; 2; 3; 6\right\}$

Nếu $b=1$ thì $a=7$. Khi đó $a+7b=14$ không là snt (loại) 

Nếu $b=2$ thì $a=9$. Khi đó $a+7b = 23$ là snt (thỏa mãn) 

Nếu $b=3$ thì $a=11$. Khi đó $a+7b=32$ không là snt (loại) 

Nếu $b=6$ thì $a=17$. Khi đó $a+7b = 59$ là snt (thỏa mãn) 

Vậy.........

10 tháng 4 2018

Ta co : \(a^2+b^2⋮3\)\(\Leftrightarrow\hept{\begin{cases}a^2⋮3\\b^2⋮3\end{cases}}\)

 De \(a^2⋮3;b^2⋮3\)thi \(a,b⋮3\)

\(\Rightarrow dpcm\)

11 tháng 4 2018

Vì a2 là số chính phương =>a2 chia cho 3 dư 0 hoặc 1

Tương tự:b2 là số chính phương =>b2 chia cho 3 dư 0 hoặc 1

=>a2+b2 chia cho 3 dư 0,1 hoặc 2

Mà a2+b2 chia hết cho 3

=>a2+b2 chia cho 3 dư 0

=>a2 và b2 chia hết cho 3

Vì a2 chia hết cho 3,3 là số nguyên tố =>a chia hết cho 3

Tương tự:b2 chia hết cho 3,3 là số nguyên tố =>b chia hết cho 3

Vậy nếu (a2+b2) chia hết cho 3 thì a và b cùng chia hết cho 3

Quỳnh Anh ơi,a2+b2 chia hết cho 3 thì a2 và b2 cũng có thể chia không chia hết cho 3 mà,làm sao suy ra a2 và bphải chia hết cho 3 vậy ?

13 tháng 1 2015

1) Vì a, b là số nguyên tố và a - 1 chia hết cho b nên a là số nguyên tố lẻ >=3 và b =2( vì a -1 chẵn)

b3 - 1 = 7 chia hết cho a, nên a =7. Vậy a = b2 + b + 1( 7 = 22 + 2 + 1)

5 tháng 1 2016

?

5 tháng 1 2016

xin chào bạn Lương Thị Loan

chúng mik kết bạn nha

mik xin lỗi mik ko thể kết bạn với bạn được vì mik đã hết lượt rùi

18 tháng 3 2020

cái này mik chịu, mik mới có lớp 7

19 tháng 3 2020

1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)

Mà b+a>b-a ; p là số nguyên tố 

=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)

=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)

Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4

Mà p là số nguyên tố 

=> \(p^2\)chia 8 dư 1

=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)

+Số chính phương chia 3 luôn dư 0 hoặc 1

Mà p là số nguyên tố lớn hơn 3

=> \(p^2\)chia 3 dư 1

=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)

Từ (1);(2)=> \(a⋮12\)

Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)

1 tháng 2 2016

bai toan nay minh phai bo tay