Cho a và là 2 số nguyên dương thỏa mãn các tính chất sau:
a. (a+1) chia hết cho b
b. a=2b+5
c. a+7b là số nguyên tô
Hãy tìm a và b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a, b là các số nguyên thỏa mãn (a2 + b2) chia hết cho 3.
CMR a và b cùng chia hết cho 3.
Ta co : \(a^2+b^2⋮3\)\(\Leftrightarrow\hept{\begin{cases}a^2⋮3\\b^2⋮3\end{cases}}\)
De \(a^2⋮3;b^2⋮3\)thi \(a,b⋮3\)
\(\Rightarrow dpcm\)
Vì a2 là số chính phương =>a2 chia cho 3 dư 0 hoặc 1
Tương tự:b2 là số chính phương =>b2 chia cho 3 dư 0 hoặc 1
=>a2+b2 chia cho 3 dư 0,1 hoặc 2
Mà a2+b2 chia hết cho 3
=>a2+b2 chia cho 3 dư 0
=>a2 và b2 chia hết cho 3
Vì a2 chia hết cho 3,3 là số nguyên tố =>a chia hết cho 3
Tương tự:b2 chia hết cho 3,3 là số nguyên tố =>b chia hết cho 3
Vậy nếu (a2+b2) chia hết cho 3 thì a và b cùng chia hết cho 3
Quỳnh Anh ơi,a2+b2 chia hết cho 3 thì a2 và b2 cũng có thể chia không chia hết cho 3 mà,làm sao suy ra a2 và b2 phải chia hết cho 3 vậy ?
xin chào bạn Lương Thị Loan
chúng mik kết bạn nha
mik xin lỗi mik ko thể kết bạn với bạn được vì mik đã hết lượt rùi
1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)
Mà b+a>b-a ; p là số nguyên tố
=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)
=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)
Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4
Mà p là số nguyên tố
=> \(p^2\)chia 8 dư 1
=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)
+Số chính phương chia 3 luôn dư 0 hoặc 1
Mà p là số nguyên tố lớn hơn 3
=> \(p^2\)chia 3 dư 1
=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)
Từ (1);(2)=> \(a⋮12\)
Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)
Lời giải:
a+1\vdots b$
$\Rightarrow 2b+5+1\vdots b$
$\Rightarrow 2b+6\vdots b$
$\Rightarrow 6\vdots b\Rightarrow b\in \left\{1; 2; 3; 6\right\}$
Nếu $b=1$ thì $a=7$. Khi đó $a+7b=14$ không là snt (loại)
Nếu $b=2$ thì $a=9$. Khi đó $a+7b = 23$ là snt (thỏa mãn)
Nếu $b=3$ thì $a=11$. Khi đó $a+7b=32$ không là snt (loại)
Nếu $b=6$ thì $a=17$. Khi đó $a+7b = 59$ là snt (thỏa mãn)
Vậy.........