Cho hình chóp S.ABC có SA, SB, SC tạo với mặt đáy các góc bằng nhau và bằng 60 ⁰ . Biết BC=a, B A C ^ = 45 ° . Tính khoảng cách h từ đỉnh S đến mặt phẳng (ABC)
A. h = a 6
B. h = a 6 2
C. h = a 6 3
D. h = a 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi A’ là hình chiếu của A trên mặt phẳng (P). Khi đó d A ; P = A A ' .
Sử dụng các công thức tính diện tích tam giác ABC
S = 1 2 b c sin A = 1 2 a c sin B = 1 2 a b sin C
Trong đó a, b, c là độ dài các cạnh của tam giác, R là bán kính đường tròn ngoại tiếp tam giác.
Gọi H là hình chiếu đỉnh S lên mp (ABC) khi đó ta có góc tạo bởi SA, SB, AC với đáy lần lượt là S A H ; S B H ; S C H và S A H = S B H = S C H = 60 °
Dễ dàng chứng minh được Δ S A H = Δ S B H = Δ S C H ⇒ H A = H B = H C ⇒ H là tâm đường tròn ngoại tiếp tam giác Δ A B C .
Đặt S H = h .
Xét tam giác vuông SAH có A H = S H . cot 60 ° = h 3 = R .
Xét tam giác ABC có: S A B C = A B . A C . B C 4 R = A B . A C . a 4 h 3 = 3 a 4 h A B . A C
Mà
S A B C = 1 2 A B . A C . sin B A C = 1 2 2 2 A B . A C = 2 4 A B . A C
⇒ 3 a 4 h = 2 4 ⇔ h = 3 a 2 = a 6 2 .
Gọi H là trung điểm của AC
Đỉnh S cách đều các điểm A, B, C
Xác đinh được
Ta có MH//SA
Gọi I là trung điểm của AB
và chứng minh được
Trong tam giác vuông SHI tính được
Chọn A.
Chọn C.
Phương pháp: Sử dụng công thức tính thể tích khối chóp khi biết ba góc ở một đỉnh và ba cạnh ở đỉnh đó.
(trong đó a, b, c là độ dài ba cạnh, x, y, z là số đo ba góc ở một đỉnh)
Sau đó tính khoảng cách dựa vào công thức tính thể tích h = 3 V h .
Cách giải: Áp dụng công thức trên ta có:
Chọn A
Gọi H là trung điểm của AC. Đỉnh S cách đều các điểm A, B, C
=> SH ⊥ (ABC)
Xác đinh được
Ta có MH // SA
Gọi I là trung điểm của AB => HI ⊥ AB
và chứng minh được HK ⊥ (SAB)
Trong tam giác vuông SHI tính được