Cho hai đường thẳng d và d’ cắt nhau có bao nhiêu phép quay biến đường thẳng d thành đường thẳng d’:
A. Không có phép quay nào.
B. Có duy nhất một phép quay.
C. Có 2 phép quay.
D. Có vô số phép quay.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Các phép biến một điểm A thành chính nó:
Phép đồng nhất:
- Phép tịnh tiến theo vectơ 0 .
- Phép quay tâm A, góc φ = 0º.
- Phép đối xứng tâm A.
- Phép vị tự tâm A, tỉ số k = 1.
- Ngoài ra còn có:
- Phép đối xứng trục mà trục đi qua A.
b. Các phép biến hình biến điểm A thành điểm B:
- Phép tịnh tiến theo vectơ AB .
- Phép đối xứng qua đường trung trực của đoạn thẳng AB.
- Phép đối xứng tâm qua trung điểm của AB.
- Phép quay mà tâm nằm trên đường trung trực của AB.
- Phép vị tự mà tâm là điểm chia trong hoặc chia ngoài đoạn thẳng AB theo tỉ số k.
c. Phép tịnh tiến theo vectơ v //d.
- Phép đối xứng trục là đường thẳng d’ ⊥ d.
- Phép đối xứng tâm là điểm A ∈ d.
- Phép quay tâm là điểm A ∈ d, góc quay φ =180º.
- Phép vị tự tâm là điểm I ∈ d.
Lấy M(2; 1) thuộc d, phép quay Q ( O ; 90 o ) biến M(2; 1) thành M’(-1; 2). Tâm quay O(0; 0) thuộc d ⇒ d' đi qua O và M’ có phương trình 2x + y = 0.
Đáp án B
Lấy A(0; 1) và B(-1/2;0) thuộc d, phép quay Q ( O ; 90 o ) biến A thành A’(-1; 0), biến B thành B’(0; -1/2) phương trình d’ qua A’, B’ là x + 2y + 1 = 0.
Đáp án D
Đáp án là B
x − 3 8 − 3 = y + 6 − 11 + 6 < = > − 5 x − 5 y − 15 = 0 < = > x + y + 3 = 0
Đáp án A
Các phát biểuđúng: 2, 3,5,6
1. Phép tịnh tiến biến đường thẳng thành đường thẳng song song hoặc trùng với nó
4. Phép đối xứng tâm biến đường thẳng thành đường thằng song song hoặc trùng với nó
7. Phép biến hình F’ có được nhờ thực hiệnphép vị tựkhông phải là phép dời hình
Đáp án D