Rút gọn biểu thức A = 1 3 + 1 + 1 3 − 1 + 2 2 − 6 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)
2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)
\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)
\(=\dfrac{20-6}{2}=7\)
a,M=2^0-2^1+2^2-2^3+2^4-2^5+.....+2^2012
2M=2^1-2^2+2^3-2^4+2^5-2^5+......-2^2012+2^2013
3M=2^0+2^2013
M=(2^0+2^2013)÷3
Vậy.......
b,N=3-3^2+3^3-3^4+3^5-3^6+.....+3^2011-3^2012
3N=3^2-3^3+3^4-3^5+3^6-3^7+......+3^2012-3^2013
4N=3-3^2013
N=(3-3^2013)÷4
Vậy........
K tao nhé ko lên lớp tao đánh m😈😈😈
Bài 1:
a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)
b: Để A=3 thì 3x-9=x+1
=>2x=10
hay x=5
Bài 2:
a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)
\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)
b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;1;5;-1\right\}\)
\(\left(\dfrac{6-2}{1-3}-\dfrac{5}{5}\right):\dfrac{1}{5-2}\)
\(=\left(\dfrac{4}{-2}-1\right):\dfrac{1}{3}\)
\(=\left(-2-1\right):\dfrac{1}{3}\)
\(=-3.3\)
\(=-9\)
\(=\left(\dfrac{4}{-2}-1\right):\dfrac{1}{3}\)
=(-3)*3
=-9
\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
=> \(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)\)
=> \(A=2-\frac{1}{2^{2012}}=\frac{2^{2013}-1}{2^{2012}}\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
\(2A=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\)
\(2A-A=A\)
\(=\left(3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
\(=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}-1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{2012}}\)
\(=2-\frac{1}{2012^2}\)
\(B=\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{9999}\right)\cdot\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
\(B=\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{9999}\right)\cdot\left(\frac{6}{12}-\frac{4}{12}-\frac{2}{12}\right)\)
\(B=\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{9999}\right)\cdot0=0\)
B = 1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7
B = 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
B = 1 - 1/7
B = 6/7
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=1-\frac{1}{7}\)
\(=\frac{6}{7}\)
A = 3 − 1 + 3 + 1 ( 3 + 1 ) ( 3 − 1 ) + 2 ( 2 − 3 ) 2 = 2 3 3 − 1 + 2 − 3 = 3 + 2 − 3 = 2