Cho hai điểm A, B thuộc cùng một nửa mặt phẳng bờ là đường thẳng xy (AB không vuông góc với xy). Gọi A’ đối xứng với A qua xy, C là giao điểm của A’B và xy. Gọi M là điểm bất kì khác C thuộc đường thẳng xy. Chứng minh rằng: AC + CB < AM + MB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2
Kẻ D doi xung voi A qua Ox
E doi xung voi A qua Oy
Goi B' la 1 diem bat ki tren Ox,C' la 1 diem bat ki tren Oy
Do Ox la duong trung truc cua AD
=> BA=BD,B'A=B'A
Tuong tu=> C'A=C'E,CA=CE
Ta co
PABC=AB+BC+AC
Ma AB=BD.AC=CE
=>PABC=BC+BD+CE=ED
lai co B'D+B'E\(\ge ED\)
B'C'\(\ge B'E\)
=> B'D+B'C'+C'E\(\ge ED\)
=>PAB'C'\(\ge P_{ABC}\)
Dau ''='' xay ra khi B'\(\equiv B,C'\equiv C\)
Vì L và M đối xứng qua đường thẳng xy nên xy là đường thẳng đi qua trung điểm và vuông góc với ML.
Nên đường thẳng xy là trung trực của ML.
I ∈ xy ⇒ IM = IL (theo định lý 1).
Nên IM + IN = IL + IN
- TH1: Nếu I, L, N thẳng hàng
⇒ IL + IN = LN (vì N và L nằm khác phía so với đường thẳng xy và I nằm trên xy).
⇒ IM + IN = LN
- TH2: Nếu I không là giao điểm của LN và xy thì ba điểm I, L, N không thẳng hàng
Áp dụng bất đẳng thức tam giác vào Δ INL ta được: IL + IN > LN
mà IM = IL (cmt)
⇒ IL + IN > LN (bất đẳng thức tam giác)
⇒ IM + IN > LN
Vậy với mọi vị trí của I trên xy thì IM + IN ≥ LN
Vì L và M đối xứng qua đường thẳng xy. Nên đường thẳng xy là trung trực của ML
I ∈ xt => IM = IL
Nên IM + IN = IL + IN
+ Nếu I là giao điểm của NL và xy thì IL + IN = LN
+ Nếu I không là giao điểm của NL và xy thì ba điểm I, N, L không thẳng hàng
=> IL + IN > LN
Vậy với mọi vị trí của I trên xy thì IL + IN ≥ LN
Vì L và M đối xứng qua đường thẳng xy. Nên đường thẳng xy là trung trực của ML
I ∈ xt => IM = IL
Nên IM + IN = IL + IN
+ Nếu I là giao điểm của NL và xy thì IL + IN = LN
+ Nếu I không là giao điểm của NL và xy thì ba điểm I, N, L không thẳng hàng
=> IL + IN > LN
Vậy với mọi vị trí của I trên xy thì IL + IN ≥ LN
ướng dẫn:
Vì L và M đối xứng qua đường thẳng xy. Nên đường thẳng xy là trung trực của ML
I ∈ xt => IM = IL
Nên IM + IN = IL + IN
+ Nếu I là giao điểm của NL và xy thì IL + IN = LN
+ Nếu I không là giao điểm của NL và xy thì ba điểm I, N, L không thẳng hàng
=> IL + IN > LN
Vậy với mọi vị trí của I trên xy thì IL + IN ≥ LN
48. Hai điểm M và N cùng nằm trên một nửa mặt phẳng có bờ là đường thẳng xy.
Lấy điểm L đối xứng với M qua xy. Gọi I là một điểm của xy. Hãy so sánh IM + IN với LN.
Hướng dẫn:
Vì L và M đối xứng qua đường thẳng xy. Nên đường thẳng xy là trung trực của ML
I ∈ xt => IM = IL
Nên IM + IN = IL + IN
+ Nếu I là giao điểm của NL và xy thì IL + IN = LN
+ Nếu I không là giao điểm của NL và xy thì ba điểm I, N, L không thẳng hàng
=> IL + IN > LN
Vậy với mọi vị trí của I trên xy thì IL + IN ≥ LN
L đối xứng với M qua xy
I thuộc xy
=> IM = IL
Xét \(\Delta ILN\)
IL + IN > LN ( BĐT tam giác)
Hay IM + IN > LN
#Hk_tốt
#Ngọc's_Ken'z
a: ΔOMN cân tại O có OD là trung tuyến
nên OD vuông góc NA
góc ODA=góc OBA=90 độ
=>ODBA nội tiếp
b; Xét ΔABM và ΔANB có
góc ABM=góc ANB
góc BAM chung
=>ΔABM đồng dạng với ΔANB
=>AB/AN=AM/AB
=>AB^2=AN*AM
Vì L và M đối xứng qua đường thẳng xy. Nên đường thẳng xy là trung trực của ML
I ∈ xt => IM = IL
Nên IM + IN = IL + IN
+ Nếu I là giao điểm của NL và xy thì IL + IN = LN
+ Nếu I không là giao điểm của NL và xy thì ba điểm I, N, L không thẳng hàng
=> IL + IN > LN
Vậy với mọi vị trí của I trên xy thì IL + IN ≥ LN
Vì A' đối xứng với A qua xy
⇒ xy là đường trung trực của AA'.
⇒ CA' = CA (t/chất đường trung trực)
MA' = MA (t/chất đường trung trực)
AC + CB = A'C + CB = A'B (1)
MA + MB = MA'+ MB (2)
Trong ∆ MA'B, ta có:
A'B < A'M + MB (bất đẳng thức tam giác) (3)
Từ (1), (2) và (3) suy ra: AC + CB < AM + MB