Cho a 2 .b.7 = 140, với a, b là các số nguyên tố, vậy a có giá trị bằng bao nhiêu?
A. 1
B. 2
C. 3
D. 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nếu p=3 thì \(2^p+p^2=2^3+3^2=17\) là số nguyên tố
Nếu \(p\ge5\) thì \(2^p+p^2=\left(2^p+1\right)+\left(p^2-1\right)=\left(2^p+1\right)+\left(p-1\right)\left(p+1\right)\)
Khi p là số nguyên tố , \(p\ge5\)=> p lẻ và p không chia hết cho 3; do đó: \(\left(2^p+1\right)\)chia hết cho 3 và (p-1)(p+1) chia hết cho 3 \(\Rightarrow\left(2^p+p^2\right)\)chia hết cho 3 \(\Rightarrow p^2+2^p\)không là số nguyên tố
Khi p=2, ta có : \(2^p+p^2=2^2+2^2=8\)là hợp số
Vậy duy nhất có p=3 thỏa mãn.
b) \(a+b+c+d=7\Rightarrow b+c+d=7-a\Rightarrow\left(b+c+d\right)^2=\left(7-a\right)^2\)
Mặt khác: \(\left(b+c+d\right)^2\le3\left(b^2+c^2+d^2\right)\Rightarrow\left(7-a\right)^2\le3\left(13-a^2\right)\)
Lại có : \(\left(7-a\right)^2\le3\left(13-a^2\right)\Leftrightarrow49-14a+a^2\le39-3a^2\Leftrightarrow4a^2-14a+10\le0\)
Giải ra được : \(1\le a\le\frac{5}{2}\)
Vậy : a có thể nhận giá trị lớn nhất là \(\frac{5}{2}\), nhận giá trị nhỏ nhất là 1
Dãy số có 2 chữ số chia hết cho 3 là:[12,15,....,99]
Khoảng cách của từng số hạng là 3
Số số hạng là: (99-12):3+1=30(số)
Vậy có 30 số có 2 chữ số chia hết cho 3
Đáp án là B
Ta có a 2 .b.7 = 140 ⇒ a 2 b = 20 = 2 2 .5
Vậy giá trị của a là 2