Tìm x ∈ N, biết:
b) 4x + 3x = 30 – 20 : 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x - 3) : 2 = 5 14 : 5 12
(x - 3) : 2 = 5 2
(x - 3) : 2 = 25
(x - 3) = 25.2
x = 50 + 3
x = 53
b) 4x + 3x = 30 – 20 : 10
7x = 30 - 2
7x = 28
x = 28 : 7
x = 4
a) x+3=12
x=12-3
x=9
b)(x-3):2=514:512
=>(x-3):2=52
=>(x-3):2=25
=>x-3=25.2
=>x-3=50
=>x=50+3
=>x=53
c)4x+3x=30-20:10
=>x(4+3)=30-2
=>7x=28
=>x=28:7
=>x=4
d)2x-138=23.32
=>2x-138=8.9
=>2x-138=72
=>2x=72+138
=>2x=210
=>x=210:2
=>x=105
a) x + 3 = 12
x = 12 - 3
x = 9
b) ( x - 3 ) : 2 = 514 : 512
( x - 3 ) : 2 = 514-12
( x - 3 ) : 2 = 52
( x - 3 ) : 2 = 25
x - 3 = 50
x = 53
c) 4x + 3x = 30 - 20 : 10
7x = 28
x = 4
d) 2x - 138 = 23 x 32
2x - 138 = 8 x 9
2x - 138 = 72
2x = 210
x = 105
\(35-5\left(x-1\right)=10\\ \Leftrightarrow35-5x+5=10\\ \Rightarrow40-5x=10\)
\(\Rightarrow-5x=10-40\\ \Rightarrow-5x=-30\\ \Rightarrow x=\dfrac{-30}{-5}=6\)
c)
\(24\left(x-16\right)=12^2\)
\(\Rightarrow24x-384=144\\ \Rightarrow24x=144+384\\ \Rightarrow24x=528\\ \Rightarrow x=\dfrac{528}{24}=22\)
d)
\(\left(x^2-10\right)\div5=3\\ \Rightarrow\left(x^2-10\right)=3\times5\\ \Rightarrow x^2-10=15\)
\(\Rightarrow x^2=15+10\\ \Rightarrow x^2=25\\ \Rightarrow x^2=5^2\Rightarrow x=5\)
\(x+3=12\\ \Rightarrow x=9\)
Vậy \(x=9\).
\(4x+3x=30-20:10\\ \Rightarrow x\left(4+3\right)=30-2\\ \Rightarrow x.7=28\\ \Rightarrow x=4\)
Vậy \(x=4.\)
`4x^2 = 13`.
`=> x^2 = 13/4`.
`=> x = (sqrt 13)/(sqrt 4)`
`=> x = (+-sqrt 13)/2`.
Vậy `S = (+-sqrt 13)/2`.
Ta có :
\(\left|3x+18\right|\ge0\) và \(\left|4x-28\right|\ge0\) \(\Rightarrow\) \(\left|3x+18\right|+\left|4y-28\right|\ge0\)
Mà \(\left|3x+18\right|+\left|4y-28\right|\le0\) ( đề bài cho )
\(\Rightarrow\)\(\left|3x+18\right|+\left|4y-28\right|=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+18=0\\4y-28=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=-18\\4y=28\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-6\\y=7\end{cases}}}\)
Vậy \(x=-6\) và \(y=7\)
Ta có \(\left|3x+18\right|+\left|4y-28\right|\le0\)
Mà \(\left|3x+18\right|\ge0\forall x;\left|4y-28\right|\ge0\forall y\)
=> |3x+18|+|4y-28|=0
=> 3x+18=4y-28=0
• 3x+18=0 <=> 3x=-18 <=> x=-6
• 4y-28=0 <=> 4y=28 <=> y=7
Vậy ...
b)
4x + 3x = 30 – 20 : 10
7x = 30 - 2
7x = 28
x = 28 : 7
x = 4