Cặp số nào sau đây là nghiệm của hệ phương trình
2 x + 5 y = 3 x - 3 y = - 4
A.(-1;1)
B.(-3;-1)
C.(2;-1)
D.(3;1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=-1 và y=2 vào 2x-y+3, ta được:
\(2x-y+3=-2-2+3=-1< 0\)
=>(-1;2) không là nghiệm của bất phương trình 2x-y+3>0
b:
-x+2+2(y-2)<2(2-x)(1)
=>-x+2+2y-4<4-2x
=>-x+2y-2-4+2x<0
=>x+2y-6<0
Thay x=-1 và y=2 vào x+2y-6, ta được:
\(x+2y-6=-1+4-6=-3< 0\)
=>(-1;2) là nghiệm của bất phương trình (1)
c: Thay x=-1 và y=2 vào x-y-15, ta được:
\(x-y-15=-1-2-15=-18< 0\)
=>(-1;2) là nghiệm của bất phương trình x-y-15<0
d: 3(x-1)+4(y-2)<5x-3(2)
=>3x-3+4y-8<5x-3
=>3x+4y-11-5x+3<0
=>-2x+4y-8<0
=>x-2y+4>0
Khi x=-1 và y=2 thì \(x-2y+4=-1-4+4=-1< 0\)
=>(-1;2) không là nghiệm của bất phương trình (2)
Câu 1: Cặp số là nghiệm phương của 2x + 3y = 7 là:
C. ( 2;1 )
Câu 2: Phương trình x + 2y = 3, Cặp số là nghiệm phương của phương trình đã cho là cặp số : ( 1;1)
Đáp án A
Phương án D không phải là hệ phương trình bậc nhất hai ẩn nên loại D
Hệ phương trình có chứa phương trình bậc hai là hệ phương trình ở đáp án D nên loại D
+ Với hệ phương trình A:
x − y = − 2 x + y = 4 ⇒ 1 − 3 = − 2 1 + 3 − 4 ⇔ − 2 = − 2 4 = 4 (luôn đúng) nên (1; 3) là nghiệm của hệ phương trình x − y = − 2 x + y = 4
+ Với hệ phương trình B: 2 x − y = 0 x + y = 4
Thay x = 1; y = 3 ta được 2.1 − 3 = 0 1 + 3 = 4 ⇔ − 1 = 0 1 + 3 = 4 (vô lý) nên loại B.
+ Với hệ phương trình C: x + y = 4 2 x + y = 4
Thay x = 1; y = 3 ta được 1 + 3 = 4 2.1 + 3 = 4 ⇔ 4 = 4 5 = 4 (vô lý) nên loại C.
Đáp án:A
Thay các cặp số vào bất phương trình đã cho ta thấy chỉ có cặp số (4;4) thỏa mãn bất phương trình. Đáp án là D.
+) Với cặp số (1; 2) thì ta có 5.1 + 2 = 7 − 1 − 3.2 = 21 ⇔ 7 = 7 − 7 = 21 (vô lý) nên loại A
+) Với cặp số (8; −3) thì ta có 5.8 + ( − 3 ) = 7 − 8 − 3. ( − 3 ) = 21 ⇔ 37 = 7 1 = 21 (vô lý) nên loại B
+) Với cặp số (3; 8) thì ta có 5.3 + 8 = 7 − 3 − 3.8 = 21 ⇔ 23 = 7 − 27 = 21 (vô lý) nên loại D
+) Với cặp số (3; −8) thì ta có 5.3 + ( − 8 ) = 7 − 3 − 3. ( − 8 ) = 21 ⇔ 7 = 7 21 = 21 (luôn đúng) nên chọn C
Đáp án: C
Từ phương trình (1): x – my = m ⇔ x = m + my thế vào phương trình (2) ta được phương trình:
m (m + my) + y = 1
⇔ m 2 + m 2 y + y = 1 ⇔ ( m 2 + 1 ) y = 1 – m 2 ⇔ y = 1 − m 2 1 + m 2
(vì 1 + m 2 > 0 ; ∀ m ) suy ra x = m + m . 1 − m 2 1 + m 2 = 2 m 1 + m 2 với mọi m
Vậy hệ phương trình luôn có nghiệm duy nhất ( x ; y ) = 2 m 1 + m 2 ; 1 − m 2 1 + m 2
⇒ x – y = 2 m 1 + m 2 − 1 − m 2 1 + m 2 = m 2 + 2 m − 1 1 + m 2
Đáp án: B
+) Thay x = 3; y = −5 vào hệ x − 3 y = 1 x + y = 2 ta được 3 − 3 ( − 5 ) = 1 3 + ( − 5 ) = 2 ⇔ 18 = 1 − 2 = 2 (vô lý) nên loại A
+) Thay x = 3; y = −5 vào hệ y = − 1 x − 3 y = 5 ta được − 5 = − 1 2 − 2. ( − 5 ) = 5 ⇔ − 5 = − 1 18 = 5 (vô lý) nên loại C
+) Thay x = 3; y = −5 vào hệ 4 x − y = 0 x − 3 y = 0 ta được 4.3 − ( − 5 ) = 0 3 − 3. ( − 5 ) = 0 ⇔ 17 = 0 18 = 0 (vô lý) nên loại D
+) Thay x = 3; y = −5 vào hệ 3 x + y = 4 2 x − y = 11 ta được 3.3 + ( − 5 ) = 5 2.3 − ( − 5 ) = 11 ⇔ 4 = 4 11 = 11 (luôn đúng) nên chọn B
Đáp án: B
Đáp án là A