Cho các số a,b,c,d khác 0. Tính:
T = x2011 + y2011 + z2011 + t2011
Biết x,y,z,t thoả mãn :
\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
\(=>\frac{x^{2010}}{a^2+b^2+c^2+d^2}+\frac{y^{2010}}{a^2+b^2+c^2+d^2}+\frac{z^{2010}}{a^2+b^2+c^2+d^2}+\frac{t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
\(=>\left(\frac{x^{2010}}{a^2+b^2+c^2+d^2}-\frac{x^{2010}}{a^2}\right)+\left(\frac{y^{2010}}{a^2+b^2+c^2+d^2}-\frac{y^{2010}}{b^2}\right)+\left(\frac{z^{2010}}{a^2+b^2+c^2+d^2}-\frac{z^{2010}}{c^2}\right)+\left(\frac{t^{2010}}{a^2+b^2+c^2+d^2}-\frac{t^{2010}}{d^2}\right)=0\)
\(=>x^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\right)+y^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{b^2}\right)+z^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{c^2}\right)+t^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{d^2}\right)=0\)
\(Do\left\{\begin{matrix}\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{b^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{c^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{d^2}\ne0\end{matrix}\right.\)
\(=>\left\{\begin{matrix}x^{2010}=0\\y^{2010}=0\\z^{2010}=0\\t^{2010}=0\end{matrix}\right.\)
\(=>\left\{\begin{matrix}x=0\\y=0\\z=0\\t=0\end{matrix}\right.\)
Ta có
\(T=x^{2011}+y^{2011}+z^{2011}+t^{2011}\)
\(=>T=0^{2011}+0^{2011}+0^{2011}+0^{2011}\\ T=0+0+0+0\\ T=0\)
(x^2+y^2+z^2)/(a^2+b^2+c^2)=
=x^2/a^2+y^2/b^2+z^2/c^2 <=>
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+
+(b^2/c^2)z^2+(c^2/a^2)x^2+
+(c^2/b^2)y^2+z^2 <=>
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+
+[(a^2+b^2)/c^2]z^2 = 0 (*)
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2;
và C=[(a^2+b^2)/c^2]z^2
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm
Từ (*) ta có A+B+C=0
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0
Vậy x^2011+y^2011+z^2011=0
Và x^2008+y^2008+z^2008=0.
M=a+b=c+d=e+f.M=a+b=c+d=e+f.
⇒⎧⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪⎩a7=b11=a+b7+11=M18(1)c11=d13=c+d11+13=M24(2)e13=f17=e+f13+17=M30(3)⇒{a7=b11=a+b7+11=M18(1)c11=d13=c+d11+13=M24(2)e13=f17=e+f13+17=M30(3)
Kết hợp (1),(2)và(3)(1),(2)và(3)
⇒M∈BCNN(18;24;30).⇒M∈BCNN(18;24;30).
⇒M∈{0;360;720;1080;...}⇒M∈{0;360;720;1080;...}
Mà MM là số tự nhiên nhỏ nhất có 4 chữ số.
⇒M=1080.⇒M=1080.
Vậy M=1080.
nhớ cho mình 1 k nhé chúc bạn học tốt
PT đã cho suy ra thành
\(\left(\frac{x^{2010}}{a^2+b^2+c^2+d^2}-\frac{x^{2010}}{a^2}\right)+\left(\frac{y^{2010}}{a^2+b^2+c^2+d^2}-\frac{y^{2010}}{b^2}\right)+\left(\frac{z^{2010}}{a^2+b^2+c^2+d^2}-\frac{z^{2010}}{c^2}\right)\)
\(+\left(\frac{t^{2010}}{a^2+b^2+c^2+d^2}-\frac{t^{2010}}{d^2}\right)=0\)
\(=>x^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\right)+\left(tương\right)Tựnha=0\)
Do
\(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\ne0\)
máy cái bạn tự suy ra cx thế
\(=>x^{2010}=y^{2010}=z^{2010}=t^{2010}=0=>x=y=z=t=0\)
ta có
\(T=x^{2011}+y^{2011}+z^{2011}+t^{2011}=0+0+0+0=0\)
Ta có:
\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
<=> \(x^{2010}\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+y^{2010}\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\)
\(+z^{2010}\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+t^{2010}\left(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)=0\)(1)
Lại có: \(x^{2010};y^{2010};z^{2010};t^{2010}\ge0;\forall x,y,z,t\)
và với mọi a; b ; c ; d khác 0 có:
\(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\)
\(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\);
\(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\);
\(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\)
=> \(x^{2010}\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)
\(y^{2010}\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)
\(z^{2010}\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)
\(t^{2010}\left(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)
=> \(x^{2010}\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+y^{2010}\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\)
\(+z^{2010}\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+t^{2010}\left(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)
Như vậy (1) xảy ra<=> \(x^{2010}=y^{2010}=z^{2010}=t^{2010}=0\)
<=> x = y = z = t = 0
Thay vào T ta có : T = 0
(x^2+y^2+z^2)/(a^2+b^2+c^2)=
=x^2/a^2+y^2/b^2+z^2/c^2 <=>
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+
+(b^2/c^2)z^2+(c^2/a^2)x^2+
+(c^2/b^2)y^2+z^2 <=>
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+
+[(a^2+b^2)/c^2]z^2 = 0 (*)
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2;
và C=[(a^2+b^2)/c^2]z^2
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm
Từ (*) ta có A+B+C=0
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0
Vậy x^2011+y^2011+z^2011=0
Và x^2008+y^2008+z^2008=0.
k co mk nha
khó thì mình mới nhờ các bạn giúp chứ