Giá trị của a để đa thức 2ax + 4 có nghiệm là -1 là:
A. a = 2
B. a = -2
C. a = -1
D. a = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đa thức có nghiệm \(\Rightarrow\Delta'=a^2-\left(2a^2+b^2-5\right)\ge0\)
\(\Rightarrow a^2+b^2\le5\)
\(P=\left(a+1\right)\left(b+1\right)=ab+a+b+1=\dfrac{\left(a+b\right)^2-\left(a^2+b^2\right)}{2}+a+b+1\)
\(P\ge\dfrac{\left(a+b\right)^2-5}{2}+a+b+1=\dfrac{1}{2}\left(a+b+1\right)^2-2\ge-2\)
\(P_{min}=-2\) khi \(\left\{{}\begin{matrix}a^2+b^2=5\\a+b+1=0\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(2;-1\right);\left(-1;2\right)\)
Để phương trình có nghiệm thì :
\(\Delta_x=a^2-\left(2a^2+b^2-5\right)\ge0\)
\(\Leftrightarrow a^2+b^2\le5\)
\(\Leftrightarrow\left(a+b\right)^2\le5+2ab\)
\(\Leftrightarrow ab\ge\frac{\left(a+b\right)^2-5}{2}\)
Ta có :
\(P=\left(a+1\right)\left(b+1\right)=ab+a+b+1\)
\(\ge\frac{\left(a+b\right)^2-5}{2}+\left(a+b\right)+1=\frac{1}{2}\left(a+b+1\right)^2-2\ge-2\)
Dấu " = " xảy ra khi \(\hept{\begin{cases}a=-2\\b=1\end{cases}}\)
Thay x = -1 vào P(x) ta có được :
P(-1) = 3 <=> 2a + 3 + 4 = 3
<=> 2a = -4 <=> a = -2
Vậy chọn a)
Cho đa thức F(x) = 2ax^2 + bx (a,b là hằng số). Xác định a,b để đa thức F(x) có nghiệm x = -1 và F(1) = 4
Vì đa thức F(x) có nghiệm x = -1 nên F(-1) = 0
⇒ 2a - b = 0 ⇒ b = 2a
Vì F(1) = 4 ⇒ 2a + b = 4 ⇒ b = 4 - 2a(1)
Từ đây ta có 2a = 4 - 2a ⇒ 4a = 4 ⇒ a = 1
Thay a=1 vào (1)
=> b=4-2.1=4-2=2
Vậy a=1 vs b=2
Câu 1: Đơn thức 1/2 xy^ 3 z ^2 có bậc là bao nhiêu?
A. 3 B. 4 C. 5 D. 6
Câu 2: Giá trị của đơn thức1/2 x^ 2 y tại x = 2 và y = 1 là:
A.1/2 B. 2 C. 1 D. 4
Câu 3: Nghiệm của đa thức P (x) = x 3 - 9x. là giá trị nào trong các giá trị sau?
A. 0 B. -3 C. 3 D. 0; -3; 3
Câu 4: Khi nhân hai đơn thức (-3/7xy 2 ).(-7x 2 y 2 ) được tích là:
A. -3x 2 y 4 B. 3x 3 y 4 C. -3x 3 y 4 D.-10/7x^ 3 y^ 4
Câu 5: Khi cộng ba đơn thức: 5xy 2 ; -7xy 2 ; 3xy 2 được tổng là:
A. x 3 y 6 B. xy 2 C. 15xy 2 D. - 9xy 2
Câu 6: . Đa thức P (x) = x 2 –x 3 + 2x 4 + 5 có hệ số cao nhất là:
A. 1 B. -1 C. 5 D. 2
Để đa thức có nghiệm là -1 thì 2a.(-1) + 4 = 0 ⇒ -2a + 4 = 0 ⇒ a = 2. Chọn A