K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

Giả sử phương trình f(x) = 0 có nghiệm nguyên x = a. Khi đó f(x) = (x - a).g(x)

Vậy thì f(0) = -a.g(x)   ; f(1) = (1 - a).g(x) ; f(2) = (2 - a).g(x);    f(3) = (3 - a).g(x) ; f(4) = (4 - a).g(x) ; 

Suy ra f(0).f(1).f(2).f(3).f(4) = -a.(1-a)(2-a)(3-a)(4-a).g5(x)

VT không chia hết cho 5 nhưng VP lại chia hết cho 5 (Vì -a.(1-a)(2-a)(3-a)(4-a) là tích 5 số nguyên liên tiếp nên chia hết cho 5)

Vậy giả sử vô lý hay phương trình f(x) = 0 không có nghiệm nguyên.

            

NV
26 tháng 3 2022

Gọi số hạng có bậc cao nhất của \(f\left(x\right)\) là \(a_n.x^n\)

\(\Rightarrow\) Số hạng bậc cao nhất của \(16f\left(x^2\right)\) là \(16.\left(a_nx^n\right)^2=16a_n^2.x^{2n}\)

Số hạng bậc cao nhất của \(f^2\left(2x\right)\) là: \(\left(a_n.2x^n\right)^2=4a_n^2.x^{2n}\)

Đồng nhất hệ số 2 vế ta được: \(16a_n^2=4a_n^2\Rightarrow a_n=0\)

Hay mọi số hạng chứa x của đa thức đã cho đều có hệ số bằng 0

\(\Rightarrow\) Đa thức đã cho là đa thức hằng

Hay \(f\left(x\right)=k\) với mọi x

Thay vào đề bài: \(16k=k^2\Rightarrow\left[{}\begin{matrix}k=0\\k=16\end{matrix}\right.\)

Vậy có 2 đa thức thỏa mãn: \(\left[{}\begin{matrix}f\left(x\right)\equiv0\\f\left(x\right)\equiv16\end{matrix}\right.\)