Tìm x biết
9 x (X - 6) = 3 x X
cần nhanh ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+3}{12}=\dfrac{3}{x+3}\) (đk: \(x\neq-3\))
\(\Rightarrow\left(x+3\right)\cdot\left(x+3\right)=3\cdot12\)
\(\Rightarrow\left(x+3\right)^2=36\)
\(\Rightarrow\left(x+3\right)^2=\left(\pm6\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x+3=6\\x+3=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-9\left(tm\right)\end{matrix}\right.\)
Vậy \(x\in\left\{3;-9\right\}\).
\(\dfrac{x+3}{12}=\dfrac{3}{x+3}\\ \Rightarrow\left(x+3\right)\left(x+3\right)=12.3\\ \Rightarrow x^2+6x+9=36\\ \Rightarrow x^2+6x+9-36=0\\ \Rightarrow x^2+6x-27=0\\ \Rightarrow x^2-3x+9x-27=0\\ \Rightarrow x\left(x-3\right)+9\left(x-3\right)=0\\ \Rightarrow\left(x+9\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x+9=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-9\end{matrix}\right.\)
Vì tổng số hạt của X là 10 nên ta có:
(1) P+N+E=10
Mặt khác P=E(2)
Mà, số hạt mang điện nhiều hơn số hạt không mang điện là 2 nên ta có:
(3) (P+E)-N=2
Từ (1), (2), (3) ta lập hpt:
\(\left\{{}\begin{matrix}P+N+E=10\\P=E\\\left(P+E\right)-N=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2P+N=10\\2P-N=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}P=E=Z=3\\N=4\end{matrix}\right.\)
bạn kiểm tra lại đề nhé! mình nghĩ A=(x+1)(x+2)(x+3)(x+6) thì đúng hơn
\(A=x^3-2x+n\)
\(B=n-2\)
\(A\text{⋮}B\) ⇒ \(\left(x^3-2x+n\right)\text{⋮}\left(n-2\right)\)
⇒ \(\left[\left(x^3-2x^2\right)+\left(2x^2-4x\right)+\left(2x-4\right)+\left(n+4\right)\right]\text{⋮}\left(n-2\right)\)
⇒ \(\left[x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)+\left(n+4\right)\right]\text{⋮}\left(n-2\right)\)
⇒ \(\left[\left(x-2\right)\left(x^2+2x+2\right)+\left(n+4\right)\right]\text{⋮}\left(x-2\right)\)
Vì \(\left(x-2\right)\left(x^2+2x+2\right)\text{⋮}\left(n-2\right)\)
Để \(A\text{⋮}B\)
⇒ \(n+4=0\)
⇒ \(n=-4\)
Bài 1:
a: x/-2=-18/x
=>x2=36
=>x=6 hoặc x=-6
b: x/2+x/5=17/10
=>7/10x=17/10
hay x=17/7
\(\left(\dfrac{6:\dfrac{3}{5}-\dfrac{17}{16}.\dfrac{6}{7}}{\dfrac{21}{5}.\dfrac{10}{11}+\dfrac{57}{11}}-\dfrac{\left(\dfrac{3}{20}+\dfrac{1}{2}-\dfrac{1}{15}\right).\dfrac{12}{49}}{\dfrac{10}{3}+\dfrac{2}{9}}\right).x=\dfrac{215}{96}\)
\(\Rightarrow\left(\dfrac{\dfrac{509}{56}}{9}-\dfrac{\dfrac{7}{12}.\dfrac{12}{49}}{\dfrac{32}{9}}\right).x=\dfrac{215}{96}\)
\(\Rightarrow\left(\dfrac{509}{504}-\dfrac{\dfrac{1}{7}}{\dfrac{32}{9}}\right).x=\dfrac{215}{96}\)
\(\Rightarrow\left(\dfrac{509}{504}-\dfrac{9}{224}\right).x=\dfrac{215}{96}\)
\(\Rightarrow\dfrac{1955}{2016}.x=\dfrac{215}{96}\)
\(\Rightarrow x=\dfrac{215}{96}:\dfrac{1955}{2016}\)
\(\Rightarrow x=\dfrac{903}{391}\)
`[ 6 : 3/5 - 17/16 . 6/7 : 21/5 . 10/11 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 : 10/3 + 2/9 ] . x = 215/96`
`=>[ 6 . 5/3 - 17/16 . 6/7 . 5/21 . 10/11 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 . 3/10 + 2/9 ] . x = 215/96`
`=>[10- 51/56 . 6/7 . 5/21 . 10/11 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 . 3/10 + 2/9 ] . x = 215/96`
`=> [10- 153/196 . 5/21 . 10/11 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 . 3/10 + 2/9 ] . x = 215/96`
`=> [10- 255/1372 . 10/11 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 . 3/10 + 2/9 ] . x = 215/96`
`=> [10- 1275/7546 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 . 3/10 + 2/9 ] . x = 215/96`
`=> (10- 1275/7546 + 57/11 - 7/12. 12/49 . 3/10 + 2/9 ) . x = 215/96`
`=> ( 10- 1275/7546 + 57/11 -343/600 . 3/10 + 2/9 ) . x = 215/96`
`=> ( 10- 1275/7546 + 57/11 -343/2000 + 2/9 ) . x = 215/96`
`=>15,06357671 . x= 215/96`
`=> x= 215/96: 15,06357671`
`=>x= 0,1486754027`
Đề có phải như vậy không nhỉ ?
Viết lại đề bài:
Tìm số nguyên x sao cho \(\frac{6}{x+1}.\frac{x-1}{3}\)là số nguyên
Giải:
\(\frac{6}{x+1}.\frac{x-1}{3}\text{}\)
\(=\frac{3.2}{x+1}.\frac{x-1}{3}\text{}\)
\(=\frac{3.2.\left(x-1\right)}{\left(x+1\right).3}\text{}\)
\(=\frac{3.2.\left(x-1\right)}{3.\left(x+1\right)}\)
\(=\frac{3.2.\left(x-1\right)}{3.\left(x+1\right)}\)
\(=\frac{2.\left(x-1\right)}{\left(x+1\right)}\)
\(=2.\frac{\left(x-1\right)}{\left(x+1\right)}\)
Bí....
Sorr nhak
Ta có:\(\frac{6x}{x+1}=\frac{6x+6-6}{x+1}=\frac{6\left(x+1\right)-6}{x+1}=6-\frac{6}{x+1}\)
Để\(\frac{6x}{x+1}\)là số nguyên \(\Leftrightarrow6⋮x+1\)
\(\Rightarrow x+1\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow x=\left\{-7;-4;-3;-2;0;1;2;5\right\}\left(1\right)\)
Để\(\frac{x-1}{3}\)là số nguyên\(\Leftrightarrow\left(x-1\right)⋮3\)
\(\Rightarrow x-1=3k\Rightarrow x=3k+1\left(k\in Z\right)\left(2\right)\)
Từ (1) và (2)\(\Rightarrow x\in\left\{-2;1\right\}\)
Vậy \(x\in\left\{-2;1\right\}\)
\(9\left(x-6\right)=3x\)
\(9x-54=3x\)
\(9x-3x-54=0\)
\(6x=54\)
\(x=9\)