Cho hàm số y = a x 2 . Xác định hệ số a trong các trường hợp sau : Đồ thị của nó đi qua điểm B(-2 ; 3).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đồ thị hàm số y = a x 2 đi qua điểm A(3 ; 12) nên tọa độ điểm A nghiệm đúng phương trình hàm số.
Ta có : 12 = a. 3 2 ⇔ a = 12/9 = 4/3
Vậy hàm số đã cho là y = (4/3) x 2
a: Thay x=3 và y=12 vào y=ax2, ta được:
9a=12
hay a=4/3
b: Thay x=-2 và y=3 vào \(y=ax^2\), ta được:
4a=3
hay a=3/4
Đồ thị hàm số y = 2x + b đi qua điểm (1; 5), do đó ta có:
5 = 2.1 + b => b = 3
a) Đồ thị của hàm số y = 2x + b cắt trục tung tại điểm có tung độ bằng -3, nghĩa là khi x = 0 thì y = -3, do đó:
-3 = 2.0 + b => b = -3
b) Đồ thị hàm số y = 2x + b đi qua điểm (1; 5), do đó ta có:
5 = 2.1 + b => b = 3
Lời giải:
ĐT $y=ax+b$ đi qua gốc tọa độ $(0;0)$ nên $b=0$
ĐT $y=ax+b=ax$ đi qua điểm $A(-1;-1)$ nên:
$-1=a(-1)\Leftrightarrow a=1$
Vậy $a=1; b=0$
a) Với a = 2 hàm số có dạng y = 2x + b.
Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5 khi đó tung độ bằng 0 nên:
0 = 2.1,5 + b => b = -3
Vậy hàm số là y = 2x – 3
b) Với a = 3 hàm số có dạng y = 3x + b.
Đồ thị hàm số đi qua điểm (2; 2), nên ta có:
2 = 3.2 + b => b = 2 – 6 = - 4
Vậy hàm số là y = 3x – 4
c) Đường thẳng y = ax + b song song với đường thẳng y = √3 x nên a = √3 và b ≠ 0. Khi đó hàm số có dạng y = √3 x + b
Đồ thị hàm số đi qua điểm (1; √3 + 5) nên ta có:
√3 + 5 = √3 . 1 + b => b = 5
Vậy hàm số là y = √3 x + 5
a) Đồ thị hàm số đi qua gốc tọa độ
=> có dạng y = ax
=> b = 0
Đồ thị hàm số có hệ số góc bằng -2
=> y = -2x
Đồ thị hàm số y = a x 2 đi qua điểm B(-2 ; 3) nên tọa độ điểm B nghiệm đúng phương trình hàm số.
Ta có : 3 = a. - 2 2 ⇔ a = 3/4
Vậy hàm số đã cho là y = (3/4) x 2