Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{64a^2}\cdot2a=\sqrt{\left(8a\right)^2}\cdot2a=\left|8a\right|\cdot2a\)
Với a < 0 A = 8a.(-2a) = -16a2
Với a ≥ 0 A = 8a.2a = 16a2
\(B=3\sqrt{9a^6}-6a^3=3\sqrt{\left(3a^3\right)^2}-6a^3=9\left|a^3\right|-6a^3\)
C1: Áp dụng BĐT AM-GM ta có:
\(4x+1+\frac{7}{3}\ge2\sqrt{\frac{7}{3}\left(4x+1\right)}\)
TƯơng tự rồi cộng theo vế ta có:
\(4\sum x +10 \geqslant 2\sqrt{\dfrac{7}{3}}.(\sum \sqrt{4x+1}) \Leftrightarrow VT \le \sqrt{21}\)
C1: Áp dụng BĐT C-S ta có:
\(\sum \sqrt{4x+1} \leqslant \sqrt{3\left ( 4\sum x+3 \right )} = \sqrt{21}\)
Bạn vui lòng viết đề bằng công thức toán để được hỗ trợ tốt hơn.
\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}=\frac{2xy^2}{3ab}\frac{3\sqrt{a^2.a}\sqrt{\left(b^2\right)^2}}{2\sqrt{2xy^2.y}}\)
\(=\frac{2xy^2}{3ab}\frac{3a\sqrt{a}b^2}{2y\sqrt{2xy}}=\frac{6xy^2ab^2\sqrt{a}}{6aby\sqrt{2xy}}=\frac{bxy\sqrt{a}}{\sqrt{2xy}}\)
\(=\frac{bxy\sqrt{2axy}}{2xy}=\frac{b\sqrt{2axy}}{2}\)
- có nghĩa khi và
Nếu thì
Nếu thì - Tương tự như vậy ta có:
Nếu thì
Nếu thì - Ta có:
Điều kiện để căn thức có nghĩa là hay Do đó:
Nếu b>0 thì
Nếu thì - Điều kiện để có nghĩa là hay
Cách 1.
=
Cách 2. Biến mẫu thành một bình phương rồi áp dụng quy tắc khai phương một thương: - Điều kiện để có nghĩa là hay xy>0.
Do đó
a) \(\sqrt{\frac{9a^2-12ab+4b^2}{81a^4b^4}}=\sqrt{\frac{\left(3a-4b\right)^2}{\left(9a^2b^2\right)^2}}\)
\(=\frac{3a-4b}{9a^2b^2}\)
b)\(\sqrt{\frac{1}{a}-\frac{1}{a^2}}=\sqrt{\frac{a-1}{a^2}}=\frac{1}{a}\sqrt{a-1}\)
P/s tham khảo nhé
a,\(\dfrac{9a^2-16b^2}{4b-3a}=\dfrac{\left(3a-4b\right)\left(3a+4b\right)}{\text{4b-3a}}=-3a-4b\)
b,\(\dfrac{25a^2-30ab+9b^2}{3b-5a}=\dfrac{\left(5a-3b\right)^2}{3b-5a}=3b-5a\)
c,\(\dfrac{27a^3-27a^2+9a-1}{9a^2-6a+1}=\dfrac{27a^3-9a^2-18a^2+6a+3a-1}{9a^2-6a+1}=\dfrac{\left(3a-1\right)\left(9a^2-6a+1\right)}{9a^2-6a+1}=3a-1\)