Tìm số có ba chữ số, biết rằng nếu viết các chữ số theo thứ tự ngược lại thì được một số mới lớn hơn số ban đầu 792 đơn vị.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là abc
ta có : cba = abc + 792
cx 100 + bx10 + a = ax100+bx10+c+792
cx99 = a x 99 + 792
c = a + ( 792 : 99 ) = a + 8
=> a = 1
a = 1 , ta có : c = 8 + 1 = 9
b nhận mọi giá trị . ta được các số : 109 , 119 , 129 , 139 , 149 , 159 , 169 ,179 , 189 , 199 .
CHÚC BẠN MAY MẮN . CÓ GÌ THẮC MẮC CỨ HỎI MÌNH NHÉ !
@ xyz @ Dòng thứ 3 của em tại sao từ cb0 xuống dòng thứ 4 lại thành bc.10. Em kiểm tra lại nhé!
Theo đề: cba - abc = 792 => 99c - 99a = 792 => c - a = 8
Mà c <=9 và a khác 0 => c = 9 và a = 1.
Ta làm phép đặt tính: 1b9 + 729 = 9b1. Hàng đơn vị nhớ 1 vào hàng chục và hàng chục nhớ 1 vào hàng đv nên b + 10 = 1b => b nhận mọi giá trị từ 1 đến 9.
#)Giải :
Gọi số cần tìm là abc (a,b,c là các chữ số ; a khác 0 ; b,c > a)
Theo đầu bài, ta có : cba - abc = 792
<=> (100c + 10b + a) - (100a + 10b + c) = 792
<=> 99c - 99a = 99(c - a) = 792
<=> c - a = 8
Vì c > a => c = 9 và a = 1
=> b là số bất kì từ a ≤ b ≤ c hay 1 ≤ b ≤ 9
Gọi số có 3 chữ số cần tìm là abc (a;b;c < 10) ; (a;b;c\(\inℕ^∗\))
Theo bài ra ta có :
cba - abc = 792
=> (100c + 10b + 10a) - (100a + 10b + c) = 792
=> 100c + 10b + 10a - 100a - 10b - c = 792
=> (100c - c) + (10b - 10b) + (a - 100a) = 792
=> 99c - 99a = 792
=> 99.(c - a) = 792
=> c - a = 792 : 99
=> c - a = 8 (1)
Từ điều kiện và (1) ta có :
c = 9 ; a = 1 ; b \(\in\){0;1;2;3;4;5;6;7;8;9}
=> abc \(\in\){109;119;129;139;149;159;169;179;189;199}
Gọi số cần tìm là a b c (0<a, c≤9; 0≤b≤9)
Theo đề ra ta có: c b a = 792 + a b c
=>100c + 10b + a = 792 + 100a + 10b + c
=> c – a = 8 => c = 9; a = 1
(Do a không thể là số 0, thử với a = 1 thỏa mãn, a = 2 thì c = 10 không thỏa mãn nên chỉ có một giá trị duy nhất của a
từ đó tìm được một giá trị duy nhất của c.)
Vậy số cần tìm là 1 b 9 với b ∈ {0;1;2;3;4;5;6;7;8;9}
Có 10 đáp số: 109; 119; 129; …; 199
Đáp án:
Gọi số cần tìm là abc
Ta có: cba = abc + 792
cx100 + bx10 + a = ax +100 + bx10 + c + 792
cx99 = a x 99+ 792
c = a+ (792 : 99) = a + 8
Đáp án:
Gọi số cần tìm là abc
Ta có: cba = abc + 792
cx100 + bx10 + a = ax +100 + bx10 + c + 792
cx99 = a x 99+ 792
c = a+ (792 : 99) = a + 8
Gọi số cần tìm là \(\overline{abc}\) (a,b,c là chữ số; a \(\ne\) 0; c > a)
Ta có :
\(\overline{cba}-\overline{abc}=\left(100c+10b+a\right)-\left(100a+10b+c\right)\)
\(=99c-99a=99\left(c-a\right)=792\)
\(\Rightarrow c-a=8\)
Vì c > a; c là chữ số nên => c = 9 và a = 1
Vậy a = 1; c = 9 và b là một số tự nhiên bất kì trong khoảng 0 < b < 9
Gọi số cần tìm là: \(\overline{abc}\)
Điều kiện: \(0< a,c< 10;0\le b< 10;a,b,c\in N\)
Số mới là: \(\overline{cba}\)
Theo đề ta có:
\(\overline{abc}-\overline{cba}=792\)
=>100a+10b+c-100c-10b-a=792
=>99a-99c=792
=>99.(a-c)=792
=>a-c=8
Khi: a=8 =>c=0(loại)
Khi : a=9=>c=1=>\(\overline{9b1}-\overline{1b9}=792\)
=>b=0
Vậy số cần tìm là 901
Gọi số cần tìm là : abc
cba = abc + 792
cx100 + bx10 + a = a x 100 + b x 10 + c + 792
c x 99 = a x 99 + 792
c = a + ( 792 : 99 ) = a + 8
=> a = 1
ta có : c = 8 + 1 = 9
b nhận mõi giá trị ta được các số : 109 , 119 , 129 , 139 , 149 , 159 , 169 , 179 , 189 , 199
chúc bn may mắn hok thật tốt
Gọi số cần tìm là : abc
cba = abc + 792
cx100 + bx10 + a = a x 100 + b x 10 + c + 792
c x 99 = a x 99 + 792
c = a + ( 792 : 99 ) = a + 8
=> a = 1
ta có : c = 8 + 1 = 9
b nhận mõi giá trị ta được các số : 109 , 119 , 129 , 139 , 149 , 159 , 169 , 179 , 189 , 199
Gọi số cần tìm là a b c (0<a, c≤9; 0≤b≤9)
Theo đề ra ta có: c b a = 792 + a b c
=>100c + 10b + a = 792 + 100a + 10b + c
=> c – a = 8 => c = 9; a = 1
(Do a không thể là số 0, thử với a = 1 thỏa mãn, a = 2 thì c = 10 không thỏa mãn nên chỉ có một giá trị duy nhất của a
từ đó tìm được một giá trị duy nhất của c.)
Vậy số cần tìm là 1 b 9 với b ∈ {0;1;2;3;4;5;6;7;8;9}
Có 10 đáp số: 109; 119; 129; …; 199