Có 4 tấm bìa được đánh số từ 1 đến 4. Rút ngẫu nhiên 3 tấm.
a. Hãy mô tả không gian mẫu.
b. Xác định các biến cố sau:
A: "Tổng các số trên 3 tấm bìa bằng 8"
B: "Các số trên 3 tấm bìa là ba số tự nhiên liên tiếp"
c.Tính P(A), P(B).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phép thử T được xét là: "Từ bốn tấm bìa đã cho, rút ngẫu nhiên ba tâm".
a) Đồng nhất số i với tấm bìa được đánh số i, i = , ta có: mỗi một kết quả có thể có của phép thử T là một tổ hợp chập 3 của 4 số 1, 2, 3, 4. Do đó không gian mẫu là:
Ω = {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}.
Số phần tử của không gian mẫu là n(Ω) = C34 = 4.
Vì lấy ngẫu nhiên, nên các kết quả cso thể có của phép thử T là đồng khả năng.
b) A = {(1, 3, 4)}; B = {(1, 2, 3), (2, 3, 4)}
c) P(A) = ; P(B) = = .
a) Mỗi phần tử của không gian mẫu là một tổ hợp chập 3 của 4 phần tử. Do đó, số phần tử của không gian mẫu là: \(n\left( \Omega \right) = C_4^3\) ( phần tử)
b) +) Sự kiện “Tổng các số trên ba tấm bìa bằng 9” tương ứng với biến cố \(A = \left\{ {\left( {4;3;2} \right)} \right\}\)
+) Sự kiện “Các số trên ba tấm bìa là ba số tự nhiên liên tiếp” tương ứng với biến cố \(B = \left\{ {\left( {1;2;3} \right),\left( {2;3;4} \right)} \right\}\)
c) +) Ta có: \(n\left( A \right) = 1\),\(n\left( B \right) = 2\)
+) Vậy xác suất của biến cố A và B là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{1}{4};P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{2}{4} = \frac{1}{2}\)
a) Không gian mẫu là tập hợp các số từ 1 đến 25, được ký hiệu là Ω = 1,2,3,…,25.
b) Biến cố P là tập hợp các số chia hết cho 4, được ký hiệu là P = {4,8,12,16,20,24}.
Biến cố Q là tập hợp các số chia hết cho 6, được ký hiệu là Q = {6,12,18,24}.
Biến cố S là giao của hai biến cố P và Q, nghĩa là các số vừa chia hết cho 4 và vừa chia hết cho 6, được ký hiệu là S = P ∩ Q = {12,24}.
Vậy P, Q và S lần lượt là các tập con của không gian mẫu Ω.
a: Ω={1;2;3;...;25}
n(Ω)=25
b: S=PQ là số ghi trên tấm thẻ vừa chia hết cho 4 vừa chia hết cho 6
P={4;8;12;16;20;24}
Q={6;12;18;24}
S={12;24}
Biến cố P,Q,S lần lượt là các tập hợp con của không gian mẫu
a) Không gian mẫu là các tấm thẻ được đánh số nên nó gồm 15 phần tử, ký hiệu \(\Omega = \left\{ {1;2;3;...;15} \right\}\)
b) A là biến cố “Số ghi trên tấm thẻ nhỏ hơn 7” nên \(A = \left\{ {1;2;3;4;5;6} \right\}\)
B là biến cố “Số ghi trên tấm thẻ là số nguyên tố” nên \(B = \left\{ {2;3;5;7;11;13} \right\}\)
\(A \cup B = \left\{ {1;2;3;4;5;6;7;11;13} \right\}\)
\(AB = \left\{ {2;3;5} \right\}\)
Không gian mẫu \(C_9^4\)
Các tấm bìa gồm 5 tấm số lẻ và 4 tấm số chẵn
Để tổng 4 số là số lẻ khi số số lẻ là lẻ
\(\Rightarrow\) có 1 hoặc 3 tấm bìa mang số lẻ
Số biến cố thỏa mãn: \(C_5^1C_4^3+C_5^2C_4^2\)
Xác suất: \(P=\dfrac{C_5^1C_4^3+C_5^2C_4^2}{C_9^4}\)
a) Không gian mẫu \(\Omega = \left\{ {1;2;3;4;5;6;7;8;9;10;11;12} \right\}\). Các kết quả xảy ra có đồng khả năng với nhau.
b) Biến cố \(E = \left\{ {2;3;5;7;11} \right\}\).
c) Phép thử có 12 kết quả có thể xảy ra. Biến cố E có 5 kết quả có lợi.
Vậy xác suất của biến cố E là \(\frac{5}{{12}}\).
a.Không gian mẫu gồm 4 phần tử:
Ω = {(1, 2, 3);(1,2,4);(2,3,4);(1,3,4)} ⇒ n(Ω)=4
b.Các biến cố:
+ A = {1, 3, 4} ⇒ n(A) = 1
+ B = {(1, 2, 3), (2, 3, 4)} ⇒ n(B) = 2