Cho mặt cầu S(O; r), hai mặt phẳng (α) và (β) có khoảng cách đến tâm O của mặt cầu đã cho lần lượt là a và b (0 < a < b < r). Hãy so sánh hai bán kính của các đường tròn giao tuyến.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Từ vị trí tương đối của một mặt phẳng với mặt cầu ta có đáp án đúng là D.
Đáp án D
Từ vị trí tương đối của một mặt phẳng và mặt cầu ta có mặt phẳng (P) có điểm chung với mặt cầu (S) khi và chỉ khi mặt phẳng (P) tiếp xúc hoặc cắt mặt cầu (S).
Chọn C.
*) Gọi I là hình chiếu của O lên (α) và M là điểm thuộc đường giao tuyến của (α) và mặt cầu S(O; R).
*) Xét tam giác OIM vuông tại I, ta có: OM = R và OI = d nên
Chọn C.
Gọi I là hình chiếu của O lên (α) và M là điểm thuộc đường giao tuyến của (α) và mặt cầu S(O; R).
Khi d < R thì mặt phẳng cắt mặt cầu (S) theo giao tuyến là đường tròn tâm I bán kính r = IM.
Xét tam giác OIM vuông tại I, ta có: OM = R và OI = d nên
ì 0 < a < b < r ⇒
Vậy đường tròn giao tuyến của mặt cầu S(O; r) và mặt phẳng (α) có bán kính lớn hơn mặt cầu S(O; r) và mặt phẳng (β)