Tính nhanh: M= x^15-8x^14+8x^13-8x^12+...- 8x^2+8x-2015 với x=7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(7)=7^15-8.7^14+8.7^13-8.7^12+...
-8.7^2+8.7-5=
= -7^14+8.7^13-8.7^12+...-8.7^2+8.7-5=
=7^13-8.7^12+...-8.7^2+8.7-5=
= -7^12+...-8.7^2+8.7-5=
=...= -7^2+8.7-5=7-5=2
Kết quả là 2
x=7
nên x+1=8
\(A=x^{15}-x^{14}\left(x+1\right)+x^{13}\left(x+1\right)-...-x^2\left(x+1\right)+x\left(x+1\right)-5\)
\(=x-5=7-5=2\)
x=7
=>x+1=8
=> A= x^15 - 8x^14 + 8x^13 - 8x^12 +....- 8x^2 + 8x - 5
=x15-(x+1)x14+(x+1)x13-(x+1)x12+...-(x+1)x2+(x+1)x-5
=x15-x15-x14+x14+x13-x13-x12+...-x3-x2+x2+x-5
=x-5
=>A=7-5=2
Vậy A=2 khi x=7
\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)
\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)
\(=2\)
Ta có:
x=7=>x+1=8
A=x15-(x+1)14+(x+1)x13-(x+1)x12+...-(x+1)x2+(x+1)x-5=x15-x15-x14+x14+x13-x13-x12+...-x3-x2+x2+x-5=7-5=2
Vậy A=2
Từ \(x=7\Rightarrow x+1=8\) thay vào B ta được :
\(B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+......-x^3-x^2+x^2+x-5\)
\(=x-5=7-5=2\)
Vậy B = 2
\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)
\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)
\(=2\)
\(x^{15}-\left(7+1\right)x^{14}+\left(7+1\right)x^{13}....+\left(7+1\right)x-5\)
\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}....+\left(x+1\right)x-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}....-x^3-x^2+x^2+x-5\)
\(=x-5=7-5=2\)
thay x=7
ta có:7^15-8*7^14+887^13-8*7^12+...-8*7^2+8*7-2015
f(7)=7^15-8.7^14+8.7^13-8.7^12+...
-8.7^2+8.7-5=
= -7^14+8.7^13-8.7^12+...-8.7^2+8.7-5=
=7^13-8.7^12+...-8.7^2+8.7-5=
= -7^12+...-8.7^2+8.7-5=
=...= -7^2+8.7-5=7-5=2
Kết quả là 2
sao mà 2 câu giống nhau thế